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peak areas to determine relative mole percentages. Material
balances, i.e., (olefin, + cyclopropane,)/(olefin, 4+ cyclopro-
pane,) = olefin, (init) /olefin, (init) were satisfactory, indicating
no detectable losses due to side reactions.

Several runs were made with many of the olefins having
relative rates close to that of cyclohexene. Reproducibility
was good in these cases ( £3%), with individual point varia-
tions within a run having an average deviation of *5%.
Deviations were somewhat larger with olefins of more dis-
similar reactivity. Data were treated by the usual first-order
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rate expression. No trends in relative rate ratios were observed
when points were taken at various stages of reaction.

Registry No.—1, 591-49-1; 2, 1674-10-8; 3, 591-47-9;
4, 3742-42-5,; 5, 14072-82-3; 6, 2228-98-0; 7, 3685-00-5;
8, 14116-67-7; 9, 14072-86-7; 10, 591-48-0; 11, 14072-
87-8; 12, 5122-52-5; 13, 590-66-9; 14, 142-29-0; 15, 693-
89-0; 16, 498-66-8; 17, 628-92-2; 18, 100-42-5; 19, 771-
98-2; 20, 95-13-6; iodomethylzine iodide, 4109-94-8.
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Synthetic routes to l-aryltetrazoles were studied; the reaction of sodium azide with N-aryldichloroazo-
methines in dimethoxyethane solvent provides a new general synthesis for 1-aryl-5-chlorotetrazoles. A
number of reactions of 1-aryltetrazoles are reported, including rearrangements and an opening of the tetra-

zole ring.

The 1-tetrazolyl group and its 5-substituted derivatives are inductively strongly electron with-
drawing (like nitro) but show only small resonance interactions, which vary with the 5 substituent.

Four

characteristic infrared bands between 950 and 1300 cm-! are assigned to the l-aryltetrazole system. The
molecular structure of l-aryltetrazoles is discussed on the basis of the infrared and electronic properties,

Tetrazoles have been studied extensively since they
were first described in 1885%% and have been used in a
variety of synthetic and mechanistic programs.®-*
1-Aryltetrazoles have been prepared by addition of
azide ion to isonitriles and by the reaction of diazo-
nium salts with diformylhydrazine,® but with the ex-
ception of studies by Fallon and Herbst® no generally
useful synthesis of 1-aryltetrazoles and their 5-substi-
tuted derivatives has been developed.

A. Synthesis. 1. 1-Aryl-5-chloro- and 1-Aryl-5-
azidotetrazoles.—We now report a convenient syn-
thesis of 1-aryl-5-chlorotetrazoles from the reaction of
N-aryldichloroazomethines (1) with sodium azide. In
glyme (1,2-dimethoxyethane) as solvent, the chloro-
tetrazole 2 is isolated in almost quantitative yield, but
as was previously reported by Pel’kis and Dunaevs’ka’®
for N-phenyldichloroazomethine, the use of acetone
as solvent leads directly to the l-aryl-5-azidotetrazole.
Similarly when l-phenyl-5-chlorotetrazole (2, Ar =
C;H,) is treated with sodium azide in acetone, 1-phen-
vl-5-azidotetrazole is produced” (eq 1). Spectral
studies, which will be discussed below, suggest that
this product has the assigned tetrazole structure 3
rather than the azomethine form 4, although under
certain conditions the two forms may bein equilibrium.

A large number of N-aryldichloroazomethines can
be readily converted to the corresponding 1-aryl-5-

(1) This work was presented in part at the 152nd National Meeting of the
American Chemical Society, New York, N, Y., Sept 1966,

(2) J. A. Bladin, Ber,, 18, 1544 (1885).

(3) (a) ¥. R. Benson, Chem. Rev., 41, 1 (1947); (b) F. R. Benson in
‘‘Heterocylic Compounds,’”’ R. C. Elderfield, Ed., John Wiley and Sons, Inc.,
New York, N.Y., 1967, p L.

(4) (a) R. Huisgen, Proc. Chem. Soc., 357 (1961); (b) R. Huisgen, J. Sauer,
and M. Seidel, Ann., 654, 146 (1962); (¢) W. J. Musliner and J. W. Gates,
J. Am. Chem. Soc., 88, 4271 (1066).

(5) (a) C. Temple, Jr., and J. A. Montgomery, ibid., 86, 2046 (1964);
(b) R. Fusco, S. Rossi, and S. Maiorana, Tetrahedron Letters, 1965 (1965);
(¢) J. H, Boyer and E. J. Miller, J, Am. Chem. Soc., 81, 4671 (1959).

(8) F. G. Fallon and R. M. Herbst, J. Org. Chem., 22, 933 (1957)

(7) (a) P. 8 Pel'kis and Tsg, 8. Dunaevs’'ka, Mem. Inst. Chem. Acad. Set.
Ukr. SSR, 6, 183 (1940); Chem. Abstr., 34, 5829 (1940); (b) R. Stolle, K. Ehr-
mann, D. Rieder, H. Wille, H. Winter, and F. Henke-Stark, J. Prakt. Chem.,
1834, 282 (1932).
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chlorotetrazoles by the azide reaction in glyme; in the
present study, unsubstituted and nitro- and fluoro-
substituted derivatives 2 (Ar = C¢Hs;, m-, and
p-CeH,F, 0-,m-, and p-C;H.NO,) as well as the bis
derivative 5 have been prepared (see Table I). A

=X =N
N\C/N—QN\C/N
| |
X X
5,X=Cl
6,X=N,

number of azidotetrazoles was also prepared but not
studied further because of poor stability (e.g., 6 is
extremely shock sensitive and explodes on rubbing
with a spatula.)

On the basis of our observations of this reaction, we
consider the mechanisms given in Scheme I to be the
most probable and prefer course a. Azide ion reacts
rapidly with the dichloroazomethine 1 (probably by
an addition—elimination process) to form the chloro-
tetrazole 2. The reaction of 2 with azide is considera-
bly slower, but takes place readily in acetone in which
the nucleophilic properties of azide ion are enhanced.®
When freshly precipitated (activated) sodium azide is

(8) A.J. Parker [J. Chem. Soec., 1328 (1961)] notes that SNAr reactions of

azide may occur more than 10+ times faster in dipolar aprotic solvents such
as acetone than in methanol or water.
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ScHEME 1

Cl
ArN=C<N —_—

1 N;

used, much more rapid reactions are observed. Under
these conditions the active nucleophile may not be free
azide ion in solution but rather azide ion attached to a
catalytic surface.

Stolle™ notes that while 2 reacts with hot aqueous
potassium hydroxide, it is unaffected by ethanolic sil-
ver nitrate. We have verified this observation. The
intervention of azidoazomethine species 4 and 7 in all
of these reactions (see Scheme I) cannot be ruled out,
but no trace of the normally powerful azide absorption
was detected in the infrared spectra (both solid phase
and in a variety of solvents) of nine examples of 1-aryl-
5-chlorotetrazoles (2). Thus the equilibrium (if any)
between 2 and 7 strongly favors 2.

1-Phenyl-5-chlorotetrazole was prepared originally
by Stolle® by treatment of 1-phenyltetrazole with mer-
curic acetate followed by chlorine. It was also pre-
pared by diazotizing 1-phenyl-5-aminotetrazole in hy-
drochloric acid in the presence of copper powder.™
Both of these older routes are considerably inferior to
the present method which provides a convenient route
to many arylchlorotetrazoles from the corresponding
aniline derivative.

ArNH, - ArNCS 5152

2. 1-Aryltetrazoles.—Although the reaction of
aryldichloroazomethines with sodium azide provides a
convenient and high-yield route to 5-azido- and 5-chlo-
ro-l-aryltetrazoles, routes to 1-aryltetrazoles unsub-
stituted in the 5 position were also needed for another
program. Particularly desired were ortho-substituted
derivatives. The reaction of aryldiazonium salts with
diformylhydrazine!® was reported to give certain 1-
aryltetrazoles in fair to modest yields, but like other
workers® we found the procedure to be generally un-
satisfactory. Direct arylation of tetrazole with ¢-ni-
trochlorobenzene or ¢-nitrofluorobenzene was also not
successful in contrast to the corresponding arylation
of 1,2,3-triazole.!!

A convenient route to a variety of substituted 1-
aryltetrazoles was developed from the oxidative
desulfurization of 5-mercapto-1-aryltetrazoles.!? As

(9) R. Stolle and F. Henke-Stark, J. Prakt. Chem., 124, 261 (1930).

(10) O. Dimroth and G. deMontnollin, Ber., 48, 2007 (1910).

(11) R. A. Carboni, J. C. Kauer, W. R. Hatchard, and R. J. Harder,
J. Am. Chem. Soc., 89, 2626 (1967).

(12) M. Freund and T. Paradies [Ber., 34, 3110 (1901)] reported the oxi-
dative desulfurization of 1-phenyltetrazole-5-thiol.
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shown in Scheme II,'® o-nitrophenyl isothiocyanate
reacts rapidly with warm aqueous sodium azide'* to
form the 1-(o-nitrophenyl)tetrazole thiolate anion 8,
which, on acidification, gives the unstable mercapto-
tetrazole 9.!» Chromic acid oxidation of 9 yields

(13) In this phase of the work, o-nitrophenyl derivatives were studied
more extensively and consequently will be used in the discussion, but the
majority of reactions have also been applied to other aryl derivatives.

(14) Excessive heating of the solution must be avoided.

(15) (a) E. Lieber, C. N, R. Rao, C. N. Pillai, J. Ramachandran, and
R. D. Hites [Can. J. Chem., 36, 801 (1958)] have reported that the infrared
spectra of these compounds in the solid state support the tetrazolinethione
formulation 9b rather than the tautomeric mercaptotetrazole 9a. Our
spectral correlations also suggest that these compounds are not normal
l-aryltetrazoles. However, for convenience in tabulation, the 5-mercapto-
tetrazole nomenclature will be maintained. Similar arguments have been
made for the existence of 5-hydroxy-l-aryltetrazoles in the tautomeric
tetrazolin-5-one (lactam) form.!$v (b) J. P, Horwitz, B. E. Fisher, and A. J.
Tormasewski, J. Am. Chem. Soc., 81, 3076 (1959).
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o-nitrophenyltetrazole (10) in 50-609; yield.!* This
compound in turn can be reduced catalytically in
dilute acid to the aniline 11. When the catalytic hy-
drogenation is carried out under neutral conditions,
only the hydroxylamine 12 is obtained. On standing
in solution or on warming, this hydroxylamine readily
undergoes dehydration to produce the azobenzene 13.
An attempt to reduce the o-nitrophenyltetrazole 10
with sodium sulfide in aqueous ethanol resulted in dis-
placement of nitrogen from the tetrazole ring to pro-
duce 2-aminobenzimidazole (14).

We find that the mercaptotetrazole 9 rearranges
rapidly in refluxing benzene to the thiatriazole 15

(Scheme III). This reaction appears to be the reverse
Sceeme IIT
N"“‘N A N=N
L= = I
| T
Ar If
8 Ar
S 16
N CN CN
o
OH'uH | H* ‘ H"ﬂor
Ar Ar
X
N—N R N NN
|
Ar HIII
9 Ar
15

Ar = o-nitrophenyl

of the rearrangement of 5-anilino-1,2,3,4-thiatriazole
to l-phenyl-5-mercaptotetrazole in basic solution re-
ported by Lieber, Pillai, and Hites.)” When 15 is dis-
solved in cold base and the solution immediately acidi-
fied, unchanged 15 is precipitated. However, when
the basic solution is warmed, rearrangement of anion
16 to 8 occurs and, on acidification of the solution,
only 9 is obtained. These reactions are summarized
in Scheme III.

On long heating of 15 in benzene or of 8 in agueous
base, nitrogen and sulfur are lost and o-nitrophenyl-
cyanamide (o-nitrocarbanilonitrile) is obtained!® (eq
2). 'This reaction is also applicable to the synthesis of
phenyl- and m- and p-fluorophenylecyanamide, but
yields are poor, apparently because of the instability
of the product. This is yet another example of the
facile thermal cleavage of 5-substituted thiatriazoles
to yield nitrogen, sulfur, and a substituted nitrile.
This reaction and the recent elegant syntheses of alkyl

N—S
[ )X — s + N, + XCN (2
N—N

(16) In the corresponding oxidations of 5-(m- and p-fluorophenyl)tetra-
zoles some disulfide was isolated (see Table I).

(17) E. Lieber, C. N. Pillai, and R. D, Hites, Can. J. Chem., 385, 832
(1957).

(18) Lieber and co-workers!? noted a * violent’’ decomposition on heating
unsubstituted 5-anilino-1,2,3,4-thiatriazole and the formation of nitrogen,
sulfur, and an unidentitied crystalline solid.
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cyanates!? and cyanogen isothiocyanate?® by the ther-
molysis of the corresponding thiatriazoles suggest that
this thermolysis reaction may have general utility for
the preparation of compounds with cyano groups on
oxygen, sulfur, and nitrogen functions.

B. Chemical Reactions of 1-Aryl-5-chlorotetra-
zoles.—Very little has been reported on the chemistry
of l-aryl-53-chlorotetrazoles.® Recently, nucleophilic
replacement of the chlorine by phenolate anions was
reported and utilized in a valuable synthetic procedure
for dehydroxylation of phenols.® The 5-chlorotetra-
zole ring is not affected by catalytic reduction; a nitro
group on the aryl ring can be catalytically hydro-
genated to produce the corresponding aniline (2, Ar =
CsH.NH,), which undergoes normal diazotization and
coupling with B-naphthol. 1-Phenyl-5-chlorotetra-
zole is easily nitrated in the phenyl ring with fuming
nitric acid. The position of nitration is chiefly para,
as is reported for some other aryl tetrazoles.!?2!

Decomposition of the tetrazole ring in 1-phenyl-5-
chlorotetrazole occurs chemically from attack by mag-
nesium or butyllithium. No indication of a Grignard
or lithium reagent was found on carbonation of the
reaction mixture; the product isolated was phenyl-
cyanamide. A reasonable route to such a product is
through the anion 18%%2% (eq 3). Reaction of 1-phen-

N=N
Mgor / \ 5
1 Y ArN\C —/N — ArNCN + N, 3)
18

yl-5-chlorotetrazole with triphenylphosphine in re-
fluxing benzene also occurs with nitrogen evolution,
but the product is complex and appears to contain
N-phenyleyanamide. Stolle’® noted that reaction of
this same tetrazole with sodium in ethanol resulted
in the destruction of the tetrazole ring.

C. Thermal Decomposition Studies.—The ther-
mal decomposition of tetrazoles has received consider-
able attention. 2,5-Disubstituted tetrazoles are a

source of the 1,3-dipolarophiles,* RNN=*CX. Re-
cently a careful study of the thermolysis of 5-aryltetra-
zoles?* showed that ionization of the tetrazole was an
important factor in the rate of decomposition and was
influenced considerably by solvent. No satisfactory
correlations with substituents were apparent. When
thermally decomposed, 1,5-diaryltetrazoles were shown
to rearrange to diarylearbodiimides and 2-arylbenzi-

(19) K. A. Jensen and A. Holm, Acta. Chem. Scand., 18, 826 (1964);
K. A. Jensen, M. Due, and A. Holm, ibid., 19, 438 (1965); D. Martin,
Angew. Chem. Intern. Ed. Engl., 3, 311 (1964),

(20) E. Lieber, E. Oftedahl, and C. N. R. Rao, J. Org. Chem., 28, 194
(1963).

(21) J. v. Braun and W. Rudolph, Ber., 74, 264 (1941).

(22) Substitution of the bromine of 1-phenyl-5-bromotetrazole by phenyl-
hydrazine is reported, but reaction of 1-phenyl-5-iodotetrazole with methyl-
magnesinm iodide followed by benzoyl chloride is reported to give only
N-phenyl-N-benzoyleyanamide and Ni.70.8

(23) R. A, Olofson {private communication; see J. Am. Chem. Soc., 88,
4266 (1966)) finds that deuterium exchange of the 5-H of tetrazoles proceeds
10¢ faster than the rate of decomposition. However, direct comparison of
results is not possible since our conditions involve irreversible anion forma-
tion whereas in the exchange experiment the anion is formed reversibly,
probably in low concentration. In addition, magnesium, magnesium halide,
or lithium halide in our system could promote decomposition of anion 18;
alternatively a concerted attack—decomposition not involving 18 could
explain the results,

(24) J. H, Markgraf, S. H. Brown, M. W. Kaplinsky, and R. G. Peterson,
J. Org. Chem., 29, 2629 (1064).
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midazoles.2® 1-Aryl-5-chlorotetrazoles cannot give a
stablized 1,3-dipolar intermediate on loss of nitrogen
and would not be expected to undergo the rearrange-
ment found for 1,5-diaryltetrazoles because of pre-
dicted low stability of the intermediate 19.

* - + . .
ArNC=N <«— ArN—C==N

ca Cl
19

The decomposition of 1-aryl-5-chlorotetrazole oc-
curs rapidly at 170-180° and 1 mole of nitrogen is
evolved. The rate of nitrogen evolution is first order.
No tractable decomposition product was isolated or
trapped by a variety of reagents such as nitriles or
olefins. Rate of decomposition studies (by following
nitrogen evolution, see Tables II and III) show that

TasrLE II
TueRMaL DecomposiTioN oF TETRAZOLEs. THE ErFFECT OF
SoLVENT AND CATALYST ON 1-PHENYL-5-CHLOROTETRAZOLE
(5 X 10=% More 1N 100 ML oF SOLVENT)
DecomrosiTioN AT 171 + 1°

Average rate

constant,
k1 X 102, Relative
Solvent Catalyst (ml) min-! rate
HOCH,CH,0CH.CH,0H 1.16 1.0
1.11
H,0 (2) 1.15 1.0
1.15
1 N CuS0, (2) 2.97 2.6
2.54
1 N FeCl; (2) 1.45 1.3
1 N NaOH (2) 0.88 0.8
Cuprex, Cu 0.69 0.6
powder
Quartz powder  1.11 1.0
EtOCH,CH.0CH,CH,OH 2.52 2.2
BuOCH.CH,0CH.CH.OH 2.97
C:H;CN 3.69 3.2
Nujol 9.04 7.9
Tasre III

ErrFeECT OF SUBSTITUENT ON RATE OF DECOMPOSITION OF
1-ARYLTETRAZOLES (3—-4 MMOLEs) IN BuOCH,CH,OCH,CH,OH
(100 Muy) AT 175 £ 1°

Average rate

—_——ee ArNyCXe e constant, Relative
1-Ar 5-X k1 X 102, min~! rate
CeH; Cl 2.97 1.0
m-HzNCeI‘L Cl 2.26-1.62 0.7
p-H.NCH, Cl 2.23-1.69 0.7
m-OzNCaH4 Cl 56-70 22
p-02NCsH4 Cl 79*92 29
CeH 80,CH; 1.81-1.63 0.6
CeH; SCH, 2.09-1.95 0.7
CsH; SO;:K 1.10-0.99 0.4
CeH; CH; 0.04 0.01
CeH; NH. 0.10 0.03
CeH; CeH; 0.08 0.03
CeH5 p-OQN"CsH4 002 007
p-OzNCGI’L CsH.s 024 0.08

s Registry no.: 1-Ar = C¢H;, 5-X = CH;, 14213-16-2; 1-Ar
= CeH,, 5-X = NH,, 5467-78-7.

decomposition is an order of magnitude faster in non-
polar solvents (mineral oil) than polar solvents (alco-
hol). No significant catalytic or surface effects are

(25) (8) P. A. S. Smith and E. Leon, J. Am. Chem. Soc., 80, 4647 (1958);
(b) J. Vaughan and P. A. S, Smith, J. Org. Chem., 28, 1809 (1958).
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found; the largest effect observed is doubling of the
rate by addition of copper salts. An electron-with-
drawing substituent in the aromatic ring increases the
rate of decomposition, but the effect is small; from
the small number of substituents examined (meta- and
pare-amino and nitro), no quantitative correlation is
apparent.

The rate of decomposition of the azido—azomethine
form should be different from the tetrazole form; sol-
vent and substituents do influence the position of
equilibrium, but without much more extensive studies
no definite conclusion about the mechanism of decom-
position of tetrazoles can be drawn.?®

D. Electronic Properties of Tetrazoles.—The elec-
tron density in tetrazoles has been calculated?” and
compared with dipole moment measurements.?* Un-
fortunately, tautomeric equilibria (both tetrazole-
azidoazomethine and proton position equilibria) com-
plicate the nmr measurements and no definite picture
of the electron density was obtained.

As pointed out earlier, electrophilic reagents attack
the para position in the phenyl ring of aryltetrazoles.
A phenyl ring in the 1 position of the tetrazole appears
more susceptible to attack than one in the 5 position.?!
In electrophilic substitution, para orientation to a sub-
stituent with unshared electrons is expected and usu-
ally found, even when the substituent is inductively
a strong electron-withdrawing group [for example,
N(CF3)4],*® because, in attack by an electrophilic
reagent, the requirements to stabilize a transition state
by resonance conjugation override all other factors.

Quantitative data on the electronic character of
tetrazoles have been obtained by standard pK, meas-
urements on the anilines (Table IV) and F!® nmr meas-

TasLe IV
IoNizaTioN CONSTANTS AND SUBSTITUENT PARAMETERS FOR
Antmuines, Water at 25°, RC:H,NH;* = RC:H,NH, + H+

R Amax pKa s
N=N
/ N\
——N\ /N meta 297 2.90 0.60
? para 267 2.97 0.57
H
N=N
-—N/ \... meta 204 2.58 0.72
~ 2.55
& vera 256 2.61 0.70

¢ Calculated using values of pK, for anilinium ion as 4.56
and p = +2.767.

urements on the aryl fluorides substituted in the meta
and para positions by tetrazoles (Table V). The sub-
stituent parameters, calculated by the usual meth-
ods,? are summarized in Table VI; the data obtained
for tetrazoles substituted in the 1 position by the aryl
group and in the 5 position by H, Cl, N3, disulfide, OH,

(26) 1. Ugi and R. Huisgen [Ber., 91, 531 (1958)] have studied the mecha-
nism of decomposition of arylpentazoles and have shown that they can
decompose from both the pentazole and open-chain aryldiazo-azide forms
and that the rate of decomposition is enhanced by electron-withdrawing
substituents.

(27) A.J. Owen, Tetrahkedron, 14, 237 (1961).

(28) (a) M. H. Kaufman, F. M. Ernsberger, and W. 8. McEwan, J. Am.
Chem. Soc., 78, 4197 (1956); (b) K. A. Jensen and A. Friediger, Kgl. Danske
Videnskab. Selskab, Mat-fys. Medd., 20, No. 20, 1 (1843).

(29) W. A. Sheppard and F. 8. Fawcett, J. Am. Chem. Soc., 87, 4341
(19656).

(30) (a) See W. A. Sheppard, ibid., 87, 2410 (1965); (b) The use of a1
and or parameters to evaluate the contribution by inductive and resonance
effects is described by R. W. Taft, Jr., J. Phys. Chem., 64, 1805 (1960).
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TaBLe V
F1» Nmr CHeEMIicAL SHirrs ror FCH,Z

Group Isomer Benzenes
a. Tetrazoles X
/N-N\ H meta 3.28
—N| N para 1.61
\C/ Cl meta 3.44
X pora 3.63
N; meta I
para 1.99
bis(-88-~) meta I
para I
-SH mela 1
para I
~-OH meta I
para I
b. Other groups
N—N
~NHe! S W :::Z %
-NHCN meta 2.06
para —~7.01
-N=CCl, meta
S para o
il meta I
-NHCNH, para I

Vou. 32
— —§ at infinite dilution relative to Ce¢H;F in solvent, ppm.

Dioxanes  Acetonitriles  Acetone2 Methanole CClzF?
2.96 3.23 3.17 3.83 I
1.22 2.06 1.72 2.52 I
3.21 3.51 3.36 3.94 I
3.42 4.29 4.03 4.61 I
3.03 3.28 3.15 3.52 I
1.93 2.90 2.59 2.94 I
3.53 3.81 3.63 I I
3.68 4.44 4.13 I I
2.46 2.61 2.43 2.59 I
1.58 2.59 2.02 2.39 I
I I 2.61 2,91 I
I 1 0.98 0.14 I
2.46 2.39 2.23 2.39 I
-4.60 —4.34 —4.97 —4.43 I
1.67 2.00 1.83 1.99 I
-7.79 —7.36 —7.66 —-7.36 I

1.42

—3.15
1.44 1.14 I
—2.50 —3.76 I

@ Calibrations run at 20, 10, and 59, concentration using 5% 1,1,2,2-tetrachloro-3,3,4,4-tetrafluorocyclobutane as internal stand-
ard. Chemical shift values for CsH;F relative to internal standard: benzene, —35; dioxane, —15; acetonitrile, +32; acetone, +15;

methanol, +12 Hz at 56.4 mHz.
relative to CCL;F is 6382 Hz.

b Trichlorofluoromethane used as solvent and internal calibrant.
¢ J—too insoluble for nmmr measurements.

Chemical shift value of C¢HF
¢ Registry no.: Z = -NHCN (meta), 14213-18-4; Z =

-NHCN (para), 14213-19-5; Z = -N=CCl,, (meta), 14213-20-8; Z = -NHC(=8)NH,; (meta), 458-05-9; Z = -NHC(=S8)NH,

(para), 459-05-2.

or SH are reported; values for some other substituents
are also given. From comparison of ¢, or o1 values,
the 1-tetrazoles all appear to be inductively strongly
electron-withdrawing (of the same order as a nitro
group but not so strong as a trimethylammonium),
suggesting that the l-nitrogen has lost considerable
electron density and is highly positive in character.
As expected, the 5-chloro substituent enhances this
inductive effect (see Scheme IV and discussion below).

ScuEME IV

The variations in ¢; values are not surprising since
or values obtained from F!° measurements often are
significantly less than those obtained from reactivity
or pK, measurements.’! However, from inspection of
the ¢, or or values, no simple conclusion can be drawn
about the resonance interactions from the 1 position
of the tetrazole ring. Small electron return by reso-
nance is seen from the pK, measurements, but the F1¢
nmr measurements show both donation and with-

(31) R. W. Taft, E. Price, I, R. Fox, I. C. Lewis, K. K. Andersen, and
G. T. Davis, J. Am. Chem. Soc., 85, 709 (1963).

drawal depending on the substituent in the 5 position.
Resonance interactions to feed electron density into
the aromatic ring can be described by a and are im-
portant in stabilizing the transition state for para at-
tack in electrophilic substitution. Withdrawal of
electron density by contributing forms such as b and ¢
makes the tetrazole inductively electron withdrawing.
The m-inductive mechanism3? can cause enhancement
of this electron withdrawal in the para position, but
other secondary effects such as ring currents or p—r
interactions®"® can also contribute and cause small
variations. The greater inductive effect of 5-chloro-
tetrazoles relative to tetrazole supports this picture
since the inductive effect of chlorine should enhance
the contribution of form c.

The interpretation of the parameters for the mer-
capto- and azidotetrazoles is discussed below in the
section on molecular structure. However, measure-
ments of substituent parameters for a series of 2- and
5-substituted tetrazoles are needed for a clear picture
of the electron density in the rest of the tetrazole ring.

The ¢ values were also measured for several other
groups found in intermediates or by-products of the
tetrazole preparations or reactions. The N,N-dichlo-
roazomethine group, N==CCl,, is very similar to the

+ -
@—-N-——CCQ — <}-N——cm2
+<:>=N—6012

(82) M. J. S. Dewar, “Hyperconjugation,’” The Ronald Press Co., New
York, N. Y., 1962,
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TasLe VI
SUBSTITUENT PARAMETERS FOR TETRAZOLES
AND RELATED GROUPS
Substituent— - Methods on
a. Tetrazoles X

qQ
©

ax OR OF RO

NN H A 060 0.570.57 —0.03
- N F 052 0.500.54 —0.04
N al A 072 0.70 0.69 —0.02
| F 060 061058 0.03
X N T 0.54 0.54 0.55 —0.01
SH F 045 045045 0
OH P 0.39 0.33 0.45 —0.12
bis(-8S-) F  0.63 0.64 0.62 0.02
b. Other groups
-NO, A° 0.71 1.27 0.68 0.67
Fi  0.67 0.78 0.56 0.22
—N(CFy): A* 0.47 0.530.44 0.08
. F*  0.49 0.500.49 0.0l
~N(CHa): A/ 0.85 0.750.82 —0.11
F¢ 0.87 0.82 0.93 —0.11
~CH, Ae  0.12 0.11 0.14 —0.04
F¢  0.04 —0.01 0.08 —0.09
N=(Cl, F*  0.21 0.130.29 —0.16
N=C=0 Fer  0.27  0.19 0.36 —0.17
_NHCN F 0.2 0.060.37 —0.31
N—N
VSVARAN
el N F  0.30 0.19 0.42 —0.23
9
~NHECH. F¢ 0.13 0.02 0.24 —0.22
3
|
_NHCNH, F 022 0.160.29 —0.13

e A from pK, of anilinium ions. F from F?® nmr chemical
shift measurements in CH;CN unless indicated otherwise.
b Solvent acetone. ¢ See ref 41. 9 See ref 31 and 42. ¢ See
ref 29, /7J. D. Roberts, R. A. Clement, and J. J. Drysdale, J.
Am. Chem. Soc., 73, 2182 (1951). ¢ E. A. Braude and F. C.
Nachod, “Determination of Organic Structures by Physical
Methods,”” Academic Press Inc., New York, N. Y., 1955, p 590.
k Solvent CCI;F.

isocyanate group—electron withdrawing by induction
but electron donating by resonance. This similarity
suggests that contribution from the resonance forms
shown is not important. The N-cyanoamino group,
NHCN, is more deactivating inductively than an
amide group, but is still strongly electron donating by
resonance. The aminothiatriazole group, NHCN S,
is also similar to an amide but shows even larger in-
ductive deactivation. Lieber and co-workers® sug-
gested from ultraviolet measurements that this group
is strongly electron withdrawing both induetively and
by resonance and proposed resonance contributions by
ionie structures such as 15a and 15b. However, no

S T
N/S‘(E—NHAr «— “N-S~\C=NHAr
o L

N =N
15 15a

S e g H -
N9~C=NHAr -«— N-°~C—N X
Ul | Il r +

N—N- NN
15b 15¢

Ar=CgH.S

(33) E. Lieber, J. Ramachandran, C. N. R. Rao, and C. N. Pillai, Can.
J. Chem., 317, 563 (1959).
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forms can be drawn that would suggest resonance de-
activation of the aromatic ring while the normal elec-
tron donation of the unshared electron pair on nitrogen
into the aromatic ring is possible (15¢) and could com-
pete with donation into the thiatriazole ring. The
contribution of forms 15a and 15b cannot be large
since the ¢y value for the aminothiatriazole group is
comparable to that of an amide. The enhanced o:
value for this group could be from a ring current in the
thiatriazole ring. However tautomeric structures 15d

and 15e could also be present in solution. Indeed, the
15 = zﬁ/&q:NAr _ HITI’S\(I7==NAr
N—NH N=N
15d 15e

similarity of substituent parameters for the thiatri-
azole to dichloroazomethine and isocyanate groups
suggests that these tautomeric forms 15d and 15e
(with azomethine structure) do make a significant con-
tribution. Solvents appear to shift the tautomeric
equilibrium (note solvent effects in Table V).

E. Infrared Spectral Correlations.—The infrared
spectra of approximately 30 l-aryltetrazole deriva-
tives were examined both in the solid state and in sol-
ution during the course of this work (see Table VII).
Four prominent absorption bands at approximately
1210, 1090, 1000, and 960 cm™' were observed in
these tetrazoles. In the 5-chlorotetrazoles the bands
were shifted by 10-20 cm~! to higher frequency, while
in the 5-azidotetrazoles and the 5-disulfides only small
variable shifts were observed. In most cases the first
three bands were strong and the 960-cm~' band was
medium to weak, a characteristic band pattern which
was usually easy to identify.

These correlations apparently are limited to 1-aryl-
tetrazoles since a number of other tetrazoles which
were examined (unsubstituted and 2-substituted)
failed to show the band pattern. In addition, the
pattern was not shown clearly for the six 5-mercapto-
tetrazoles studied, giving credence to the view of
Lieber!” that these compounds are not normal 5-mer-
captotetrazoles. Lieber and co-workers'® have noted
that these 5-mercaptotetrazoles, which they charac-
terize as tetrazolinethiones, exhibit medium intensity
absorptions at about 1210 and 1170 and at 1270-
1300 cm~!. We also observe these bands in the mer-
captotetrazoles as well as strong bands at about 1040
and 990 em~1.

A similar question on the molecular structure of
1-aryl-5-hydroxytetrazoles has been discussed by Hor-
witz and co-workers.!®® They report that such com-
pounds exhibit strong infrared absorption in potassium
bromide at 5.87-5.83 4 (1704-1714 cm™?) and coneclude
that the l-aryl-5-hydroxytetrazoles in the solid state
are best represented by the tautomeric tetrazolin-5-
one formulation with considerable intermolecular as-
sociation through hydrogen bonding. We, too, find
the strong carbonyl absorption at ca. 1710-1720 cm™!
in potassium bromide wafers as well as in carbon di-
sulfide solution. The absorption is displaced to ca.
1740 em~! in acetonitrile. In addition, the pattern of
absorptions in the region of 950-1300 cm! is unlike
that which we described above for normal 1l-aryltet-
razoles (see Table VII). The absorptions are, how-
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ever, very similar to those of the 1-aryl-5-mercaptotet-
razoles, suggesting that the heterocyclic nuclei of these
two classes of compound are very similar. This ques-
tion will be discussed further in the next section.

The four 5-anilino-1,2,3,4-thiatriazoles examined
exhibited strong absorptions at 1270-1300 and 1070-
1100 em~! and weaker absorptions at 930-950 cm™!,
which have been assigned by Lieber to skeletal vibra-
tions of the thiatriazole ring. In addition these com-
pounds exhibited the strong absorptions at ca. 1550—
1600 ecm~! that were observed by Lieber.!®* (The
band at ca. 1700 ecm™!, tentatively assigned by Lieber
to an exocyclic C=N absorption, was absent in the
four compounds reported here.)

F. Molecular Structure.—We have alluded several
times in the above discussions to the question of tau-
tomeric equilibria between the tetrazole and azidoazo-
methine forms (see, for example, 2 and 7 or 3 and 4)
and the mercaptotetrazole vs. tetrazolinethione forms
(see 9a and 9b). For l-aryltetrazoles and l-aryl-5-
chlorotetrazoles no azide absorption is observed in the
infrared either in the solid state or in a variety of sol-
vents including acetone and trifluoroacetic acid. For
the 1-azidotetrazole, criteria other than azide absorp-
tion band are needed. In these cases, however, the
absorption bands between 960 and 1210 cm~! charac-
teristic of 1-aryltetrazoles are present. Furthermore
the electronic properties (¢, and ¢,) of the 5-azidotet~
razole group are intermediate between those of the
tetrazole and 5-chlorotetrazole groups (see Table VI).
Solvent studies on the F!* nmr chemical shift for the
aryl fluorides show no abnormal behavior relative to
the other tetrazoles (see Table V). We conclude that
if an equilibrium exists between the azidomethine and
tetrazole forms, it must lie very far on the side of the
tetrazole both in the solid state and in solution for all
l-aryltetrazoles examined in the present study.

The position of the hydrogen atom in the mercapto-
tetrazoles is not as clearly defined. The infrared
studies suggest that the normal 1-aryltetrazole system
is not, present. The electronic character of the group
also supports this conclusion since the inductive effect
(o1 0.45) of the group is significantly less than that of
other 5-substituted tetrazoles (particularly note the
disulfides for comparison; however both groups show
no resonance effect) and the solvent effects on I''®
chemical shifts vary from the pattern for other tetra-
zoles (see Table V). The molecular weight is that of
a dimer in benzene but that of a monomer (or less
because of ionization) in dimethyl sulfoxide. We con-
clude that this tetrazole system may exist as a hydro-
gen-bonded dimer, 20 (like carboxylic acids), in the

-H. _N
iy i
Nog Ny gCTN—Ar
20

solid state or in weakly polar solvents. In this di-
meric form the tetrazole ring has lost a certain amount
of the resonance properties characteristic of the 1-aryl-
tetrazole system so that the 1-nitrogen is not so
positive.

As discussed above, the l-aryl-5-hydroxytetrazoles
have also been reported to exist as the tautomeric
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tetrazolin-5-one in the solid state because of a strong
infrared absorption at ca. 1710 cm~! assigned to the
carbonyl function;'®* we have confirmed this observa-
tion for several 1-aryl-5-hydroxytetrazoles. The sub-
stituent parameters for the 5-hydroxytetrazole group
(o1 0.45 and og —0.12) indicate that the 1-nitrogen has
less positive character than in the other tetrazoles with
the unshared pair of electrons more available for reso-
nance contribution to the phenyl ring. Thus, the
heterocyclic ring is much less aromatic and more like
an amide group (o1 0.24 and or —0.22). However,
the molecular weight in benzene is that of a dimer;
hydrogen-bonded association should be more effective
in the hydroxytetrazole than in the mercaptotetrazole
(like carboxylic compared to thiocarboxylic acids)
with the proton more closely associated with the ring
nitrogen than with the oxygen.

Experimental Section

All melting points are corrected. Proton nmr spectra were
obtained with a Varian A-60 spectrometer. Saturated deuterio-
chloroform solutions with tetramethylsilane as an internal
standard were used unless otherwise noted. Peak center posi-
tions are reported as r = 10 — 8y ppm; the number of protons
(by integration) is given in brackets. Infrared spectra were
determined in potassium bromide wafers with a Perkin-Elmer
21 spectrophotometer unless otherwise noted. Prominent
peaks are noted. TUltraviolet spectra were determined in etha-
nol unless otherwise noted.

Starting Materials.—Activated sodium azide?* was prepared
by a simplified procedure obtained from Dr. F. D. Marsh of
this laboratory. A solution of 10 g of commercial sodium
azide in 30 ml of water was treated with 1.0 g of hydrazine
hydrate. The solution was stirred for 15 min and was filtered
into 400 ml of acetone. The precipitated sodium azide was
separated by filtration, washed with acetone, and dried with a
stream of nitrogen. It was stored in = tightly stoppered bottle
under nitrogen and was used within 2 weeks.

Aryl isothiocyanates were prepared from the corresponding
anilines and thiophosgene.®: N-Aryldichloroazomethines were
generally prepared by chlorination of the corresponding aryl
isothiocyanates;¥* N-(m-nitrophenyl)dichloroazomethine was
prepared by chlorination of m-nitrophenylformanilide in thionyl
chloride.

N-(o-Nitrophenyl)dichloroazomethine.——Only the following
procedure gave a satisfactory product. A solution of 50 g
of o-nitrophenylisothiocyanate in 1 1. of methylene chloride was
treated overnight with a slow stream of chlorine. Nitrogen
was passed through the reaction mixture to remove excess
chlorine. The solution was filtered and the filtrate was concen-
trated at reduced pressure using a water pump protected by a
trap cooled to —80°. The resulting viscous oil slowly crystal-
lized. (The oil must not be warmed above 30°. Vigorous
exothermic decomposition occurs above this temperature.)
The crystals were dried on a clay plate. The crude N-(o-nitro-
phenyl)dichloroazomethine weighed 24.5 g after washing with
hexane. Recrystallization from methylene chloride-hexane
produced colorless crystals (21.4 g, 34 %) which melted at 81.5-
82.5°: Agglehexane 303 my (e 2650), 250 (6720).

Anal. Caled for C;H,CLLN.O,: C, 38.4; H, 1.84; N, 12.8;
Cl, 32.4; mol wt, 219. Found: C, 39.1; H, 2.21; N, 13.0; CI,
32.7; mol wt, 219 (cryoscopic benzene).

N-(p-Fluorophenyl)dichloroazomethine [bp 77° (9 mm), n%p
1.5440] was prepared by chlorination of the m-fluorophenyl iso-
thiocyanate in dichloromethane at 25° and is also a new com-
pound in this class.

(34) P. A. 8. Smith, Org. Reactions, 8, 382 (1946).

(35) (a) G. M. Dyson, “Organic Syntheses,” Coll. Vol. I, 2nd ed, John
Wiley and Sons, Inc., New York, N. Y., 1952, p 165; (b) D. B. Murphy,
J. Org. Chem., 29, 1613 (1964).

(36) (a) R. 8. Bly, G. A. Perkins, and W. L, Lewis, J. Am. Chem. Soc.,
44, 2896 (1922); (b) for a review of syntheses and reactions of N-aryldi-
chloroazomethines, see E. Kiithle, Angew. Chem. Intern. Ed. Engl., 1, 647
(1962).
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Anal. Caled for C;H,CL.FN: C, 43.8; H, 2.10; F, 9.9; CJ,
36.9. Found: C, 44.0; H, 2.06; F, 10.6; Cl, 37.0.

A. Synthesis. 1. 1-Aryl-S-chlorotetrazoles.—The follow-
ing example illustrates the general method used to prepare 1-
aryl-5-chlorotetrazoles. All 1-aryl-5-chlorotetrazoles prepared
by this method are reported in Table I with yields, physical
and spectral properties, and analytical data. Any major modi-
fication in method or work-up is indicated in a footnote.

A solution of 19.2 g (0.010 mole) of N-(p-fluorophenyl)di-
chloroazomethine in 25 ml of dimethoxyethane was stirred
overnight with 0.70 g (0.011 mole) of activated sodium azide.
The solution was poured into a large excess of ice water. The
resulting light-colored solid was separated by suction filtration,
washed with water, and air dried. The crude 1-(p-fluoro-
phenyl-5-chlorotetrazole), mp 87-88°, was obtained in yield
of 1.59 g (79%) and was purified by recrystallization from
benzene-hexane mixture to white crystals, mp 88°.

2. 1-Phenyl-5-azidotetrazole (3, Ar = C.H;).—A solution of
5.40 g of 2 (Ar = C¢H;) in 100 ml of acetone was treated with
13 g of commercial sodium azide. (Activated sodium azide was
used in most of the other preparations.) The solution was
stirred and heated to reflux overnight. The mixture was
filtered and solvent was removed from the filtrate under reduced
pressure. The residue was recrystallized from methanol to
yield 4.30 g (77%) of 1-phenyl-5-azidotetrazole, mp 96-96.7°
(lit.” mp 99°).

This reaction underwent no apparent reversal when a solu-
tion of 3 (Ar = C:H;) in acetone was heated to reflux for 3 days
with a large excess of tetraethylammonium chloride mono-
hydrate.

3. 1l-Aryl-5-mercaptotetrazoles.!>—Most of these com-
pounds were prepared by the standard literature procedures.!?
However, a modified procedure was required for the o-nitro
derivative.

1-(o-Nitrophenyl)-5-mercaptotetrazole.1%—A solution of 18 g
(0.1 mole) of recrystallized o-nitropheny! isothiocyanate in
50 ml of warm chloroform was placed in a round-bottom flask
equipped with a mechanical stirrer and reflux condenser and
mounted on the steam bath. A solution of 15 g of sodium azide
in 50 ml of water was added to the stirred solution. After the
initial exothermic reaction subsided, the steam was turned on
and the stirred solution was heated to reflux for 0.5-1.5 hr.
(The optimum time, which varied with the purity of the iso-
thiocyanate, was determined for each batch.) The solution
was cooled and filtered. The aqueous layer was separated and
acidified with 10 ml of 37% hydrochloric acid. The precipi-
tate of crude yellow thiol containing some o-nitrophenylecyan-
amide was separated by suction filtration, washed with distilled
water, and air dried. The crude solid was slurried with 200 ml
of benzene and allowed to stand for 1-3 days. The mixture
was filtered and the pure 1-(o-nitrophenyl)-5-mercaptotetrazole
was washed with benzene and was air dried: yield, 10-14 g
(45-63%). A portion recrystallized by careful acidification
(hydrochlorie acid) of a solution in very dilute sodium hydroxide
melted at 119.8-120.4°: vmax 3040, 2900, 2750, 1600, 1580, 1525,
1393, 1340, 1290, 1044, 986, 856, 793, 743, 718, 696, and 662
em™L.

4. 1-Aryltetrazoles by Oxidation of 1-Aryl-5-mercaptotetra-
zole.—The following modifications of the procedure of Freund
and Paradies!? were found convenient for the preparation of a
variety of 1-aryltetrazoles (see Table I; method B was found
more) suitable for certain thermally sensitive 5-mercaptotetra-
zoles).

Method A Illustrated for 1-Phenyltetrazole.—A stirred solu-
tion of 44.5 g (0.25 mole) of 1-phenyl-5-mercaptotetrazole in
350 ml of hot acetic acid was cooled to 70° and 50 g (0.50 mole)
of solid chromic acid was added in portions while maintaining
the temperature at 60-75°. After an additional 10 min at
70-75° the product was poured onto a mixture of 1 kg of ice
and 500 ml of dichloromethane in a 4-1. beaker. An aqueous
solution of 200 g of sodium hydroxide was added continuously
with stirring. The solution was brought to pH 7 with sodium
carbonate solution. The solution was extracted with methyl-
ene chloride and the extract was washed with sodium carbonate
solution and dried with magnesium sulfate. Solvent was
removed under reduced pressure and the residue was recrystal-
lized from carbon tetrachloride to yield 16.8 g (469) of 1-phen-
yltetrazole, mp 66.5-67.3 (lit.!2 mp 66.5-67.3°).

Method B Illustrated for 1-(o-Nitrophenyl)tetrazole (10).—A
solution of 30 g (0.135 mole) of o-nitrophenyl-5-mercaptotetra-
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zole in 350 ml of acetic acid was treated with a solution of 20 g
(0.20 mole) of chromic acid in 35 ml of water while maintaining
the temperature at 35-40° with a cooling bath. The solution
was allowed to stand for 1 hr and was worked up as above.
Evaporation of the solvent produced 12-16 g (47-629%) of
crude 1-(o-nitrophenyl)tetrazole, mp 79.5-82°. Recrystalliza-
tion from ethanol afforded yellow crystals: mp 85-86°; nmr
T 0.92 (1), 2.05, 2.10 (4) symmetrical multiplets. When this
compound was reduced with sodium sulfide in boiling aqueous
ethanol, it lost nitrogen to form 2-aminobenzimidazole.

B. Chemical Reactions of 5-Aryltetrazoles. 1. Nitration.
—To a stirred solution of 10.0 g (0.0554 mole) of 1-phenyl-5-
chlorotetrazole in 90 ml of 909, nitric acid was added 30 ml of
red fuming nitric acid and the mixture was warmed on the steam
bath for 5 min. The solution was then poured onto ice and the
solid product filtered, washed thoroughly with water, and air
dried. The crude 1-(p-nitrophenyl)-5-chlorotetrazole (10.3 g,
839 yield, mp 91-94°) was recrystallized from benzene-hexane
to give 8.20 g (66 %) of pale yellow plates, mp 95.5~97.0°. The
melting point rose to 98.0-99.4° after additional recrystalliza-
tions. The para orientation was proved by comparison of the
infrared and proton nmr spectra with those of authentic samples
of 1-(m- and p-nitrophenyl)-5-chlorotetrazole, prepared from
the corresponding N-(nitrophenyl)dichloroazomethines. Ana-
lytical data are given in Table I.

2. Reduction. a. To Aniline—In a control experiment,
0.5 g of 1-phenyl-5-chlorotetrazole in a solution of 100 ml of
absolute alcohol containing 0.5 g of PtO. was recovered un-
changed from shaking under 40-lb hydrogen pressure for 2 hr.

A 1.0-g sample of 1-(m-nitrophenyl)-5-chlorotetrazole in 100
ml of absolute ethanol containing 1.0 ml of 9 N HCl in anhy-
drous ethanol and 0.3 g of PtQ, with hydrogenated in a Parr
shaker at 40-b hydrogen pressure for 2 hr. The catalyst was
removed by filtration and the ethanol evaporated. The solid
residue after trituration with ether weighed 0.58 g (mp 199-200°
dec and was characterized as the hydrochloride of 1-(m-amino-
phenyl)-5-chlorotetrazole. The free aniline was obtained by
treatment of the hydrochloride with sodium carbonate and was
recrystallized from benzene-hexane. In larger scale hydro-
genations the product was partly insoluble and was extracted
from the catalyst with dilute hydrochloric acid.

b. Partial Reduction of o-Nitro Derivatives. 1. 1-(o-N-
Hydroxylaminophenyl)tetrazole (12).—A solution of 14.8 g of
10 in 100 ml of warm ethanol was catalytically hydrogenated at
40 psi with 0.2 g of 10% palladium-on-charcoal catalyst. The
resulting solution was filtered and the solvent was removed at
room temperature under reduced pressure. The residue was
rapidly recrystallized from ethanol to yield 9.9 g of 1-(o-N-hy-
droxylaminophenyl)tetrazole. A portion recrystallized from
ethanol melted at 138.8-140.6°. The product was rapidly con-
verted to the corresponding azo compound 13 in hot solvents.
This reaction also appeared to occur slowly at room tempera-
ture in ethanol.

2. o0,0"-Bis(1-tetrazolyl)azobenzene (13).—A solution of 0.5
g of the hydroxylamine 12 in 0.5 ml of N,N-dimethylformamide
was heated for 3 hr on the steam bath. The solution was
cooled, 3 ml of ethanol was added, and the orange crystalline
product was separated by filtration. After recrystallization
from hot dimethyl sulfoxide, the product melted with decompo-
sition at 244.8°,

3. Diazotization and Coupling.——A solution of 0.46 g (0.0020
mole) of 1-(m-aminophenyl)-5-chlorotetrazole in 0.5 ml of sul-
furic acid and 0.5 ml of glacial acetic acid was diazotized in the
usual manner with 0.25 g of sodium nitrite and 0.5 ml of water.
Excess nitrite was decomposed with 0.25 g of sulfamic acid in
5 ml of water and the diazonium solution was added to 1.0 g
(0.010 mole) of B-naphthol in 50 ml of 959% ethanol. The
orange precipitate (0.7 g) was separated by filtration, extracted
in ethyl acetate, and precipitated by slow addition of pen-
tane. The 1-[m-(8-hydroxynaphthylazo)phenyl]-5-chlorotetra-
zole (0.44 g, mp 204-205° dec) was further purified for analysis
by recrystallization from benzene.

4. Reaction with Magnesium or Butyllithium.—A solution
of 3.61 g of l-phenyl-5-chlorotetrazole in 10 m! of tetrahydro-
furan was added to 0.5 g of magnesium in 5 ml of tetrahydro-
furan under dry nitrogen. A crystal of iodine and 1 drop of
isopropyl alcohol did not initiate reaction, but after refluxing
for several hours part of the magnesium was consumed. The
solution was cooled and dry CO, passed over the surface. No
reaction was apparent. The solution was hydrolyzed with
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dilute ammonium sulfate and the ether layer separated. No
product was isolated from the aqueous phase on acidification,
but 2.41 g of oil was obtained from the ether. This oil crystal-
lized on standing, mp 40-45° and was identified as N-phenyl-
cyanamide, containing small amounts of impurity, by com-
parison of infrared spectra with that of an authentic sample.

From reaction of 3.28 g (0.0182 mole) of 1-phenyl-5-chloro-
tetrazole in 40 ml of ether with 13.4 ml of 1 M buty! lithium
solution in hexane (0.020 mole of butyllithium) at ~-10° fol-
lowed by CO: treatment and hydrolysis, 1.15 g of crude
N-phenylcyanamide was obtained.

5. Rearrangements of 1-Aryl-5-mercaptotetrazoles (9).—A
mixture of 10 g of the 1-(o-nitrophenyl)-5-mercaptotetrazole (9)
and 150 ml of benzene was heated to reflux for no more than
45 min. The solvent was removed under reduced pressure at
room temperature and the yellow solid residue was triturated
with 10 ml of acetone. The mixture was filtered to remove
sulfur and solvent was removed from the filtrate under reduced
pressure. The residue was rapidly recrystallized from 75 ml
of boiling benzene (Darco) to which 5 ml of hexane was added.
The yellow crystalline 5-(o-nitroanilino)-1,2,3,4-thiatriazole
(5.08 g, 51%) melted at 114.2-114.7°: yna. 1609, 1590, 1548,
1502, 1470, 1334, 1320, 1270, 1216, 1170, 1146, 1094, 1070, 972,
931, 869, 825, 782, 744, and 698 cm~!. By acidification of a
solution of 16 in warm base, the mercaptotetrazole 9 was
obtained.

By the slow addition of hexane to the mother liquors from the
recrystallization of 15, 2.25 g (26 %) of o-nitrophenylcyanamide
was obtained. This compound could also be obtained in high
yvield by heating 15 overnight in refluxing benzene. The
o-nitrophenylcyanamide melted at 148.8-149.8° (lit. mp 146°3%=
and 152-153%b) and exhibited characteristic infrared absorp-
tions for NH, C=N, and NO, at 3230, 2260, and 1530/1340
cm™1, respectively.

For preparation of phenyl- and m- and p-fluorophenylamino-
thiatriazoles, a modified literature procedure!”® (addition of
ethanol as solvent was necessary) was most satisfactory because
the rate of isomerization of the mercaptotetrazole appeared,
from infrared studies, to proceed at a comparable rate to that
of decomposition to cyanamide. The physical and analytical
data on the fluorophenylthiatriazoles are given in Table 1.

N-Phenylcyanamide and N-(p-fluorophenyl)cyanamide were
obtained in very low yield from decomposition of the cor-
responding 5-aryl-l-mercaptotetrazoles in refluxing benzene.
The m-fluorophenyleyanamide was obtained in approximately
409 yield.® The products were isolated by evaporation of the
solvent, extraction with cold dilute sodium hydroxide solution,
and acidification with cold dilute hydrochloric or acetic acid.
The poor yields in these cases relative to that from o-nitro-
phenyleyanamide are attributed to the low stability of the
products in the reflexing benzene.

Anal. Caled for C;H;FN,;: F, 14.0; N, 20.6. Found (for
mete isomer): F, 13.7, 13.6; N, 20.0; mp 68-68.5°. Found
(for para isomer): F, 13.7, 13.6; N, 20.4, 20.8; mp 82.1-82.8°.

C. Thermal Decomposition Studies.—The 1-phenyl-5-chlo-
rotetrazole was decomposed in the temperature range of 150-
200° neat and in solvents such as ethylene glycol, diethyl
maleate, mineral oil, benzonitrile, 2-(2-butoxyethoxy)ethanol,
dicyclopentadiene, and trichlorobenzene. Only brown-to-black
resins or dark oils were obtained and no tractable product
could be isolated.

Kinetic studies on rate of nitrogen evolution were carried
out by measuring nitrogen evolution from a tetrazole using a
sealed system connected to a gas buret. The tetrazole sample
(about 1 g) was added to approximately 100 ml of solvent held
at constant temperature by a refluxing solvent bath; 95-1009,

(37) (a) P. Pierron, Ann. Chim. Phys. (8), 15, 175 (1908); (b) R. C. Elder-
field and F. W. Short, J. Org, Chem., 18, 1092 (1953).

(38) E. Lieber and J. Ramachandran, Can. J. Chem., 87, 101 (1959).

(39) The m- and p-fluorophenylcyanamide were also prepared for com-
parison from N-(m- and p-fluorophenyl)thioureas by the procedure of
B. Singh, H. Krall, and R. Sahasrabudhey, J. Indian Chem. Soc., 28, 373
(1948); Chem. Abstr., 41, 6541 (1947).
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of the theoretical amount of nitrogen was obtained for a
completed reaction. A first-order rate constant to +109%, was
found between 20 and 709% of nitrogen evolution. The first-
order rate constants for nitrogen evolution in a series of decom-
positions showing solvent, catalyst, and substituent effects are
given in Tables II and III.

D. Physical and Spectral Measurements. 1. Ionization
Constants.—The ionization constants of the anilines were de-
termined by spectrophotometric measurement in water at 25°
as described previously,® following the procedure of Bryson.4!
Dasata are given in Table IV.

2. Nmr Calibrations.—The F!® nmr calibrations were car-
ried out as described previously?®? in acetonitrile containing
5% p-difluorobenzene or in benzene, dioxane, acetonitrile,
acetone, or methanol containing 59, 1,1,2,2-tetrachlorotetra-
fluorocyclobutane as internal calibrant. (Samples were not of
sufficient solubility to be calibrated in trichlorofluoromethane
or other solvents of low polarity.) Measurements were made
at three or four concentrations (40, 20, 10, and 59%) and the
chemical shift was obtained by extrapolation to infinite dilution.
Data are reported in Table V.

3. Substituent Parameters.—The Hammett o constants
were calculated by the standard methods?®4 from the ioniza-
tion constant data. Substituent constants were calculated
from the F!* Nmr chemical shift data using the procedure
described by Taft and co-workers.?%.31.48 The o1, og param-
eters were calculated according to Taft.’? The data are re-
ported in Tables IV and VI,

Registty No.—1 (Ar = 0-NO,CsH,), 14213-48-0;
1 (AI‘ = p-FCsH4), 14210‘24-3, 2 (AI‘ = CsHs),
14210-25-4; 2 (Ar = m-FCsH,), 14210-26-5; 2 (Ar =
p-FCgHA), 14210-27-6, 2 (AI‘ = 0'02NCGH4)} 14210~
28-7; 2 (Ar = m-O,NCeH,), 7025-13-0; 2 (Ar = p-
0;NCgH,), 14210-30-1; 2 (Ar = m-H,NC:H,), 14210-
31-2; 2 (Ar = m-H,NC¢H,) HCIl, 14210-32-3; 2
(AI‘ = p-HzNCeHz), 14210-33-4, 2 (AI‘ = CmleNzo),
14210-34-5; 3 (Ar = CgH;), 14210-35-6; 3 (Ar = m-
FCe¢H,), 14210-36-7; 3 (Ar = p-FCsH,), 14210-37-8;
3 (Ar = p-O;NCeH,), 14210-38-9; 5, 14210-39-0; 6,
14518-73-1; 9a, 14210-40-3; 9b, 14210-41-4; 9 (Ar =
m-FC¢H,), 9a form, 14210-42-5; 9 (Ar = p-FCH,), 9a
form, 14210-43-6; 9 (Ar = m-O,NC¢H,), 9a form,
14210-44-7; 9 (Ar = p-O,NCsH,), 9a form, 14210-
45-8; 9 (Ar = m-FC:H,), 9b form, 14210-46-9; 9 (Ar
= p-FC¢Hy), 9b form, 1544-79-2; 9 (Ar = m-0,NCe-
H,), 9b form, 7025-16-3; 9 (Ar = p-O,NC:H,), 9b
form, 14210-49-2; 10, 14210-50-5; 11, 14210-51-6; 12,
14210-52-7; 13, 14320-29-7; 15 (Ar = 0-O,NCH,),
14213-04-8; 15 (Ar = m-FCeH,), 14213-05-9; 15 (Ar
= p-FCe¢H,), 1544-80-5; N-phenyleyanamide, 622-34-
4; o-nitrophenyleyanamide, 5465-98-5.
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