peak areas to determine relative mole percentages. Material balances, *i.e.*,  $(olefin_1 + cyclopropane_1)/(olefin_2 + cyclopro$  $pane_2$  = olefin<sub>1</sub> (init)/olefin<sub>2</sub> (init) were satisfactory, indicating no detectable losses due to side reactions.

Several runs were made with many of the olefins having relative rates close to that of cyclohexene. Reproducibility was good in these cases  $(\pm 3\%)$ , with individual point variations within a run having an average deviation of  $\pm 5\%$ . Deviations were somewhat larger with olefins of more dissimilar reactivity. Data were treated by the usual first-order rate expression. No trends in relative rate ratios were observed when points were taken at various stages of reaction.

**Registry No.**—1, 591-49-1; 2, 1674-10-8; 3, 591-47-9; 4, 3742-42-5; 5, 14072-82-3; 6, 2228-98-0; 7, 3685-00-5; 8, 14116-67-7; 9, 14072-86-7; 10, 591-48-0; 11, 14072-87-8; 12, 5132-52-5; 13, 590-66-9; 14, 142-29-0; 15, 693-89-0; 16, 498-66-8; 17, 628-92-2; 18, 100-42-5; 19, 771-98-2; 20, 95-13-6; iodomethylzinc iodide, 4109-94-8.

## 1-Aryltetrazoles. Synthesis and Properties

JAMES C. KAUER AND WILLIAM A. SHEPPARD<sup>1</sup>

Contribution No. 1278 from the Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

## Received May 20, 1967

Synthetic routes to 1-aryltetrazoles were studied; the reaction of sodium azide with N-aryldichloroazomethines in dimethoxyethane solvent provides a new general synthesis for 1-aryl-5-chlorotetrazoles. A number of reactions of 1-aryltetrazoles are reported, including rearrangements and an opening of the tetrazole ring. The 1-tetrazolyl group and its 5-substituted derivatives are inductively strongly electron withdrawing (like nitro) but show only small resonance interactions, which vary with the 5 substituent. Four characteristic infrared bands between 950 and 1300 cm<sup>-1</sup> are assigned to the 1-aryltetrazole system. The molecular structure of 1-aryltetrazoles is discussed on the basis of the infrared and electronic properties.

Tetrazoles have been studied extensively since they were first described in  $1885^{2,3}$  and have been used in a variety of synthetic and mechanistic programs.<sup>3-5</sup> 1-Aryltetrazoles have been prepared by addition of azide ion to isonitriles and by the reaction of diazonium salts with diformylhydrazine,<sup>3</sup> but with the exception of studies by Fallon and Herbst<sup>6</sup> no generally useful synthesis of 1-aryltetrazoles and their 5-substituted derivatives has been developed.

A. Synthesis. 1. 1-Aryl-5-chloro- and 1-Aryl-5azidotetrazoles.-We now report a convenient synthesis of 1-aryl-5-chlorotetrazoles from the reaction of N-aryldichloroazomethines (1) with sodium azide. In glyme (1,2-dimethoxyethane) as solvent, the chlorotetrazole 2 is isolated in almost quantitative yield, but as was previously reported by Pel'kis and Dunaevs'ka<sup>7a</sup> for N-phenyldichloroazomethine, the use of acetone as solvent leads directly to the 1-aryl-5-azidotetrazole. Similarly when 1-phenyl-5-chlorotetrazole (2, Ar = $C_5H_6$ ) is treated with sodium azide in acetone, 1-phenvl-5-azidotetrazole is produced<sup>7</sup> (eq 1). Spectral studies, which will be discussed below, suggest that this product has the assigned tetrazole structure 3 rather than the azomethine form 4, although under certain conditions the two forms may be in equilibrium.

A large number of N-aryldichloroazomethines can be readily converted to the corresponding 1-aryl-5-

(3) (a) F. R. Benson, Chem. Rev., 41, 1 (1947); (b) F. R. Benson in "Heterocylic Compounds." R. C. Elderfield, Ed., John Wiley and Sons, Inc., New York, N.Y., 1967, p 1.

(4) (a) R. Huisgen, Proc. Chem. Soc., 357 (1961); (b) R. Huisgen, J. Sauer, and M. Seidel, Ann., 654, 146 (1962); (c) W. J. Musliner and J. W. Gates, J. Am. Chem. Soc., 88, 4271 (1966).

 (5) (a) C. Temple, Jr., and J. A. Montgomery, *ibid.*, 86, 2946 (1964);
 (b) R. Fusco, S. Rossi, and S. Maiorana, *Tetrahedron Letters*, 1965 (1965); (c) J. H. Boyer and E. J. Miller, J. Am. Chem. Soc., 81, 4671 (1959).

(6) F. G. Fallon and R. M. Herbst, J. Org. Chem., 22, 933 (1957)
(7) (a) P. S Pel'kis and Ts. S. Dunaevs'ka, Mem. Inst. Chem. Acad. Sci. Ukr. SSR, 6, 163 (1940); Chem. Abstr., 34, 5829 (1940); (b) R. Stolle, K. Ehrmann, D. Rieder, H. Wille, H. Winter, and F. Henke-Stark, J. Prakt. Chem., 184, 282 (1932).



chlorotetrazoles by the azide reaction in glyme; in the present study, unsubstituted and nitro- and fluorosubstituted derivatives 2 (Ar =  $C_6H_5$ , m-, and  $p-C_6H_4F$ , o-,m-, and  $p-C_6H_4NO_2$ ) as well as the bis derivative 5 have been prepared (see Table I). A



number of azidotetrazoles was also prepared but not studied further because of poor stability (e.g., 6 is extremely shock sensitive and explodes on rubbing with a spatula.)

On the basis of our observations of this reaction, we consider the mechanisms given in Scheme I to be the most probable and prefer course a. Azide ion reacts rapidly with the dichloroazomethine 1 (probably by an addition-elimination process) to form the chlorotetrazole 2. The reaction of 2 with azide is considerably slower, but takes place readily in acetone in which the nucleophilic properties of azide ion are enhanced.<sup>8</sup> When freshly precipitated (activated) sodium azide is

<sup>(1)</sup> This work was presented in part at the 152nd National Meeting of the (1) American Chemical Society, New York, N. Y., Sept 1966.
(2) J. A. Bladin, Ber., 18, 1544 (1885).

<sup>(8)</sup> A. J. Parker [J. Chem. Soc., 1328 (1961)] notes that SNAr reactions of azide may occur more than 104 times faster in dipolar aprotic solvents such as acctone than in methanol or water.





used, much more rapid reactions are observed. Under these conditions the active nucleophile may not be free azide ion in solution but rather azide ion attached to a catalytic surface.

Stolle<sup>7b</sup> notes that while 2 reacts with hot aqueous potassium hydroxide, it is unaffected by ethanolic silver nitrate. We have verified this observation. The intervention of azidoazomethine species 4 and 7 in all of these reactions (see Scheme I) cannot be ruled out, but no trace of the normally powerful azide absorption was detected in the infrared spectra (both solid phase and in a variety of solvents) of nine examples of 1-aryl-5-chlorotetrazoles (2). Thus the equilibrium (if any) between 2 and 7 strongly favors 2.

1-Phenyl-5-chlorotetrazole was prepared originally by Stolle<sup>9</sup> by treatment of 1-phenyltetrazole with mercuric acetate followed by chlorine. It was also prepared by diazotizing 1-phenyl-5-aminotetrazole in hydrochloric acid in the presence of copper powder.<sup>7b</sup> Both of these older routes are considerably inferior to the present method which provides a convenient route to many arylchlorotetrazoles from the corresponding aniline derivative.

## $ArNH_2 \rightarrow ArNCS \rightarrow 1 \rightarrow 2$

2. 1-Aryltetrazoles.—Although the reaction of aryldichloroazomethines with sodium azide provides a convenient and high-vield route to 5-azido- and 5-chloro-1-aryltetrazoles, routes to 1-aryltetrazoles unsubstituted in the 5 position were also needed for another program. Particularly desired were ortho-substituted derivatives. The reaction of aryldiazonium salts with diformylhydrazine<sup>10</sup> was reported to give certain 1aryltetrazoles in fair to modest yields, but like other workers<sup>6</sup> we found the procedure to be generally unsatisfactory. Direct arylation of tetrazole with o-nitrochlorobenzene or o-nitrofluorobenzene was also not successful in contrast to the corresponding arylation of 1, 2, 3-triazole.<sup>11</sup>

A convenient route to a variety of substituted 1aryltetrazoles was developed from the oxidative desulfurization of 5-mercapto-1-aryltetrazoles.<sup>12</sup> As

(11) R. A. Carboni, J. C. Kauer, W. R. Hatchard, and R. J. Harder, J. Am. Chem. Soc., 89, 2626 (1967).

·NO<sub>2</sub> NHOH 12 13 NO. H<sub>2</sub>. Pt neutral ·SH CrO<sub>3</sub>  $H_0$ . Pt HCI  $NO_2$ NO. NH<sub>2</sub> 9a 10 11 or EtOH, H2O NH. NO<sub>2</sub> Ĥ 14 9h

SCHEME II

shown in Scheme II,<sup>13</sup> o-nitrophenyl isothiocyanate reacts rapidly with warm aqueous sodium azide<sup>14</sup> to form the 1-(o-nitrophenyl)tetrazole thiolate anion 8, which, on acidification, gives the unstable mercaptotetrazole 9.15 Chromic acid oxidation of 9 yields

(13) In this phase of the work, o-nitrophenyl derivatives were studied more extensively and consequently will be used in the discussion, but the majority of reactions have also been applied to other aryl derivatives.

(14) Excessive heating of the solution must be avoided.
(15) (a) E. Lieber, C. N. R. Rao, C. N. Pillai, J. Ramachandran, and R. D. Hites [Can. J. Chem., 36, 801 (1958)] have reported that the infrared spectra of these compounds in the solid state support the tetrazolinethione formulation 9b rather than the tautomeric mercaptotetrazole 9a. Our spectral correlations also suggest that these compounds are not normal 1-aryltetrazoles. However, for convenience in tabulation, the 5-mercaptotetrazole nomenclature will be maintained. Similar arguments have been made for the existence of 5-hydroxy-1-aryltetrazoles in the tautomeric tetrazolin-5-one (lactam) form.<sup>15b</sup> (b) J. P. Horwitz, B. E. Fisher, and A. J. Tomasewski, J. Am. Chem. Soc., 81, 3076 (1959).

<sup>(9)</sup> R. Stolle and F. Henke-Stark, J. Prakt. Chem., 124, 261 (1930).

<sup>(10)</sup> O. Dimroth and G. deMontnollin, Ber., 43, 2907 (1910).

<sup>(12)</sup> M. Freund and T. Paradies [Ber., 34, 3110 (1901)] reported the oxidative desulfurization of 1-phenyltetrazole-5-thiol.

TABLE I Syntheses and Properties of 1-Aryltetrazoles and Thiatriazoles

10.4 339 (benzene, bp) 168 (DMSO, fp) 9.6 16.3 387 (benzene, fp) 196 (DMSO, fp) 9.0 10.4 176 (DMSO, fp) 185 (DMSO, fp) Other 14.5 19.3 9.6 9.7 15.4 15.6 29.6 15.914.1 15.7 23.99.518.3 17.6 8.7 ÷ : 31.1 27.7 28.0 28.0 28.3 30.66 8 31.2 31.1 36.431.3 28.1 28.2 30.8 31.3 31.3 30.7 œ 39.435.424.265.8 - Found, %-: : ÷ 30. . 8 9 0 9 0 9 41.4 2.36 40.8 2.42 41.0 2.19 2.682.552.382.502.392.252.94 2.14 3.213.18  $1.79 \\ 2.62$ 2.64 $2.25 \\ 2.11$ 3.283.27 : : 2.0: : 38.1 38.1 36.146.637.5 42.9 42.7 ıo, 46.6 42.0 42.2 37.7 43.4 36.5 43.4 58.7 42.4 34.7 ÷ ÷ : : Ö 37. F 9.7 S 16.4 mw 196 F 10.6 F 10.6 mw 180 F 9.7 S 16.4 Cl 19.6 F 9.6 ... F 9.3 S 14.3 S 14.3 F 9.6 CI 15.7 CI 15.7 mw 196 CI 18.1 Cl 30.6 Cl 18.1 Cl 10.1 CI 15.7 CI 25.1 mw 180 Other : % 30.431.1 28.2 31.1 9 28.2 31.1 31.1 31.1 28.639.6 35.8 30.235.824.0 66.231.431.1 : : : z 30. 28. -Caled, 1.74 2.80 2.262.263.10 3.17 2.79 2.03 3.04 3.10 1.97 1.97 2.262.03 1.79 57 57 : : ; : 1.4 Η 2 e,i ¢. 37.7 46.6 42.3 43.0 58.241.0 41.0 36.2 46.7 80 37.7 42.3 37.3 34.0 36.243.042.8 37.7 ÷ Ö 42. C7H.CINL HCI C7H4CIFN4 C7H4CIN6O2 C7H4CIN6O2 C17H11CIN6O C7H5CIN4 C7H4CIFN4 C7H4CIN602 C7H<sub>5</sub>N<sub>5</sub>O<sub>2</sub>S C7H4N8O2 C7H6FN4O C7H6N6O2S Formula C7H4NSO2 C<sub>8</sub>H<sub>4</sub>N<sub>8</sub>Cl<sub>2</sub> C7H&FN4O C<sub>7</sub>H<sub>6</sub>FN<sub>4</sub>S C<sub>7</sub>H<sub>6</sub>FN<sub>4</sub>S C<sub>7</sub>H<sub>6</sub>CIN<sub>5</sub> C7H&N7 C7H4FN7 C7H4FN7 C<sub>7</sub>H<sub>6</sub>ClN<sub>6</sub> C8H4N14 5120 7970 6120 9420 23,000 4500 13,100 2570 13,900 2250 12,900 9280 10,800 41,300 $\frac{14,000}{12,150}$  11,600  $\begin{array}{c} 12,380\\ 12,100\\ 1640\\ 2850\\ 2850\\ 10,800\\ 840\\ 1830\\ 9300\\ 5650\\ 5650\\ 14,500\\ 11,500 \end{array}$ 10,750 12,250 1360  $\begin{array}{c} 6040\\ 1520\\ 7040\\ 6440\\ 5660\\ 7280\\ 17,200\\ 12,000\end{array}$ 14,2508310 15,700 ÷ Emar A. 1-Aryltetrazoles [291 (E)
[213 sh
281 sh (E)
285 sh
285 (E)
285 (E)
285 (E)
292 (E)
219  $\lambda_{max}, m_{\mu}$ : 290 (E) 263 220 242 (E) 327 240 (E) 240 (E) 238 (E) 289 (E) 254 215 338 (E) 257 306 (E) 228 307 (E) 229 262 (E) 227 (E) 264 (I) 227 228 (I) 228 (I) 251 (E) 255 (E) 215 215 215 215 215 234 (E) (472 (E) 300 265 226 Method of prepn,<sup>b</sup> % yield A2 (over 80 %) A1 (79) A1 (73)<sup>e</sup> A1 (84–99) A3 (45–63) A2 (77) A2 (100) A2 (100) A1 (56) B1 (83)/ A1 (57) A3 (91) B2a (82) B2a (83) A3 (94) A1 (92) A1 (98) (62) A3 (73) (63) A3 (92)  $B2a^{h}$ A2 $\mathbf{B3}$ 2 From aqueous sodium hydroxide solution with dilute HCl From aqueous sodium hydroxide solution with dilute HCl As above Acetone, preciptd with Solvent for recrystln Washed with ether Benzene-pentane Benzene-hexane Benzene-hexane Benzene-hexane Benzene-hexane Benzene-hexane Benzene-hexane Benzene-hexane Benzene-hexane pentane Methanol Methanol As above As above Benzene Benzene Benzene Benzene Acetone 205 (detonates)<sup>i</sup> 51.m  $123.4 - 124.6^d$ 104 - 10588 88.8–89.6 130.4–132.2 Mp,ª ℃C 157.3-158.5 09.0-109.9 146.1-147.2 119.8-120.4 99-200 dec 204-205 dec 29.8-130. 138-139.5" 86.0-86.5 128.6-129. 148-148.5 157.5-158. 98.0-99.4 201.5-202 ř. 213 dec 96-96. 86-88 но BS N, OH  $\mathbf{SH}$  $\mathbf{SH}$  $\mathbf{BH}$  $\mathbf{SH}$ ź × ซ ซ 555 ซ ซ õ 5 zżż 5 Ar-N N-N As hydrochloride (bistetrazole) m-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub> НО− (bistetrazole) 0-02NC6H4 p-H2NC6H4 p-02NC6H4 m-01NC6H4 p-02NC6H4 p-02NC6H4 C¢H1 m-FC¢H1 p-FC6H1 0-01NC6H C¢Hs m-FC¢H4 m-FC<sub>6</sub>H<sub>4</sub> m-FC6H4 p-FC.H4 p-FC<sub>6</sub>H<sub>4</sub> p-FC.H4  $p-C_6H_4$ p-CeH4

|                                                                                               |                      | (N, bp)                          |                               |                              |                                              |                                              | ы, bp)                                         |                         |                                | ne, bp)                   |                 |         |                       |                                                 |                                                 | rtion).<br>from<br>hould<br>reund<br>-155°.<br>ate of<br>nding<br>nding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------|----------------------|----------------------------------|-------------------------------|------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------|--------------------------------|---------------------------|-----------------|---------|-----------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               |                      | 3 (CH <sup>1</sup>               |                               |                              |                                              |                                              | (acetor                                        | 8                       | ~ ~                            | (benze                    |                 |         |                       |                                                 | r                                               | in foot<br>tal Sec<br>roduct<br>^ Ani<br>ce; it s<br>ce; it s<br>in 154-<br>in 154-<br>it the r<br>rrespoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 11.4                                                                                        | 0 12.(               | 8 I                              | <b>4</b><br>:                 | :                            |                                              | :<br>:- 80                                   | 9 173                                          | 18                      | 2 10.3<br>15.9                 | 427                       | 10.2            |         | :                     | 9.6                                             | 8.9                                             | given<br>mutic p<br>ttion.<br>violenc<br>ti. <sup>38</sup> m<br>tion of<br>tion of<br>to CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 34.                                                                                         | 8 34.                | 3 36.<br>6 36.                   | 2 36.                         | 43.(                         | 8 43.5                                       | 42.1<br>0 43.1                               | 0 42.5<br>40.0                                 | 5 43.7                  | 3 28.5                         | 7 28.7                    |                 |         | 31.0                  | :                                               | :                                               | ts are<br>Expe<br>authe<br>authe<br>with y<br>mL, mL<br>funci<br>ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                               | 7 3.2                | 2 2.7                            | 0 3.0                         | 4.2                          | 5 4.18                                       | 4.2                                          | 1 4.8                                          | 3.25                    | 3 2.0                          | 1 2.5                     |                 |         | 2.29                  | 2.63                                            | 2.50                                            | resultion in<br>ion in to on to on to<br>ecrys eating<br>table table of table of $127$ of $127$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 50.                                                                                           | 50.                  | 44.<br>44.                       | 44.4                          | 51.6                         | 52.4                                         | 52.]                                         | 52.<br>47.6                                    | 52.8                    | 42.8                           | 43.1                      |                 |         | 37.9<br>37.8          | 42.4                                            | 42.3                                            | nusual<br>liscuss<br>npariscos<br>before 1<br>d deto<br>l dy h<br>l by h<br>sed in<br>rtain 1<br>rtain 1<br>$it.^{38}$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <br>F 11.6                                                                                    | F 11.6               | IDW 104                          | :                             | ÷                            | :                                            | :                                            | mw 177                                         | ÷                       | F 9.7<br>S 16.4                | mw 390<br>F 9.7           | 4 10 G          |         | :::                   | F 9.7                                           | F 9.7                                           | tions or unds (see of a day control of the water has the water has the form and e followed form is u he melting that in certain the duct in ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34.1                                                                                          | 34.1                 | 36.6<br>36.7                     | ÷                             | 43.5                         | 43.5                                         | 43.5                                         | 39.5                                           | 44.0                    | 28.7                           | 28.7                      |                 |         | 31.4                  | :                                               | ÷                                               | condi<br>mpou<br>verifiv<br>k or fi<br>k or fi<br>k or fi<br>ganat<br>ganat<br>ganat<br>ganat<br>ganat<br>1421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.07                                                                                          | 3.07                 | 2.64<br>2.64                     | ÷                             | 4.38                         | 4.38                                         | 4.38                                         | 3.98                                           | 3.17                    | 2.07                           | 2.07                      |                 |         | 2.26                  | 2.57                                            | 2.57                                            | ion in<br>the cc<br>ation<br>wash<br>shoc<br>struan<br>yield<br>e is b<br>ecrysi<br>orm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 51.2                                                                                          | 51.2                 | 44.0<br>44.0                     | :                             | 52.2                         | 52.2                                         | 52.2                                         | 47.5                                           | 52.8                    | 43.1                           | 43.1                      |                 |         | 37.7                  | 42.8                                            | 42.8                                            | modificat<br>most of<br>most of<br>cipitated;<br>ensitive to<br>assium pe<br>assium pe<br>plicity th<br>plicity th<br>plicity th<br>off<br>off<br>OH (9a f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C <sub>7</sub> H <sub>6</sub> N <sub>4</sub><br>C <sub>7</sub> H <sub>6</sub> FN <sub>4</sub> | C7H6FN1              | C7HsNsO2<br>C7HsNsO2             | C7HsNsO2                      | C'H'N6                       | C <sub>1</sub> H <sub>7</sub> N <sub>6</sub> | C <sub>7</sub> H <sub>7</sub> N <sub>6</sub> | C <sub>7</sub> H <sub>7</sub> N <sub>6</sub> O | CIHINI                  | C14H8F2N8S2                    | C14HsF2NaS2               |                 |         | C7H6N6SO2             | C <sub>7</sub> H <sub>5</sub> FN <sub>4</sub> S | C <sub>7</sub> H <sub>5</sub> FN <sub>4</sub> S | ection. Any<br>o obtained on<br><i>ara</i> orientatic<br>i chloride pre-<br>s extremely se<br>zole with pot<br>ef 15; for sim<br>as by-product<br>as by-product<br>: soluble tetri<br>: Soluble tetri<br>: C <sub>6</sub> H, X =<br>FC <sub>6</sub> H, X =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9150<br>1140<br>1800                                                                          | 9080<br>8000         | 5080<br>1070                     | 18,200<br>14,400              | 3200                         | 13,000<br>2400                               | 19,800<br>9230                               | 2580                                           | 474<br>17,520<br>15,610 |                                |                           | 82              |         | 4410<br>10,630        | 13,200                                          | 8900<br>9650<br>10,000<br>7800                  | mental Scheme<br>were also<br>were also<br>d sodium<br>aptotetra<br>aptotetra<br>isolated i<br>. ( See 1<br>). ' See 1<br>). ' Lit.<br>Ar = $p$ -'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 237 (E)<br>279 (E)<br>271                                                                     | 236<br>236 (E)       | 250 (E)<br>300 (E)               | 230<br>272 (E)                | 305 (E)                      | 220<br>310 (E)                               | 236<br>278 (E)                               | 298 (E)                                        | 452 (A)<br>328<br>235   | None (E), strong<br>sbsorption | below 210<br>As above     | B. Thistriszole |         | 356 (E)<br>282<br>236 | 300 (E)<br>340                                  | 240<br>300 (E)<br>239                           | 2.03<br>clicked in Experi-<br>and nmr spectra<br>and nmr spectra<br>der reduced press<br>ng. " Product an<br>N/NG: This con<br>N/NG: This con<br>responding merc<br>n., 124, 261 (1930<br>nording disulfade<br>boonding disulfade<br>tated from the m<br>ranb, 14213-08-2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A3a (46)<br>A3a (28) <sup>p</sup>                                                             | A3a (54)             | A3b (47–62)<br>A3b (57)          | A3b (30)                      | B1 (82)<br>B2a (56)          | B2a (60)                                     | B2a (43)                                     | B2b-1 (72)                                     | B2b-2 (50)              | A3a (23)*                      | A3a (27) <sup>s</sup>     |                 |         | B5 (51)               | B5 (53)                                         | B5 (53)                                         | effer to procedur<br>rile. Infrared<br>ut removed und<br>in aromatic ril<br>$p 99^{\circ}$ i $WAR$<br>oxidation of coi<br>$c_{J}$ J. prakt. Chen<br>p The correst<br>p The correst<br>p Was easily sepa<br>d Coch, Ann<br>d Such, Ann<br>d Coch, Ann<br>d Coch ( $d$ Do fo<br>d Coch ( $d$ Coch ( $d$ Do fo<br>d Coch ( $d$ Do fo Coch ( $d$ |
| CCI4<br>Ethanol-water, CCI4                                                                   | Ethanol-water, CCI4  | Ethanol<br>Acetone-water or CC14 | Acetone-water                 | Acetone<br>Hexane            | Water                                        | Water                                        | Ethanol                                        | Dimethyl sulfoxide      | Ethanol-water and CCI4         | Ethanol-water and CCI4    |                 |         | Benzene-hexane        | Ethanol-water                                   | Ethanol-water                                   | d numeral designation r<br>; W, water; A, acetonit<br>by filtration and solve<br>is noted for proton nmr<br>itative yield. ' Lit.'a m<br>hields. * Prepared by<br>olle and F. Henke-Stark<br>olle and F. Henke-Stark<br>for (R. Huisgen and H<br>mercaptotetrazole. It<br>30-0; Ar = m-FC <sub>6</sub> H <sub>4</sub> , 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 66.5-67.3°<br>65.5-66                                                                         | 92.5-93.5            | 85-86<br>109-109.5               | 182-184ª<br>2008 Acor (block) | 200 dec (DIOCK)<br>88.6-89.2 | 94.5-96.0                                    | 145145.5                                     | 138.8-140.6                                    | 244.8                   | 119.3-119.7                    | 143.5-144                 |                 |         | 114.2–114.7 I         | 127–127.5 I                                     | 126–127 <sup>,</sup> I                          | rected. <sup>6</sup> Letter an<br>hanol; I, isooctane<br>a chloride removed<br>al $A_2B_2$ pattern wa<br>de in almost quanti<br>quantities behind si<br>00 (1895), and R. St<br>00 (1895), and R. St<br>122 lit. mp $66.5 - 61^{12} lit. mp 66.5 - 61^{12} lit. mp 14200.51^{12} lit. mp 14200.51^{12} lit. mp 14200.51^{12} lit. mp 14200.51^{12} lit. mp 1^{12} lit.$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| н                                                                                             | н                    | н                                | Н                             | н                            | н                                            | н                                            |                                                | н                       | -88-                           | -SS-                      |                 | ×       |                       |                                                 |                                                 | the are corrively and the second an                                                                                                                                                              |
| CeH1<br>m-FCeH1                                                                               | p-FC <sub>6</sub> H4 | 0-02NC6H4<br>m-02NC6H4           | p-O2NC6H4                     | @-H2NC6H4                    | m-H2NC <sub>6</sub> H4                       | p-H2NC6H4                                    | 0-NHOHCsH4                                     | dz-zd                   | Bis(m-FC <sub>6</sub> H4)      | Bis(p-FC <sub>6</sub> H4) |                 | ArN-C S | 0-01NC6H4             | m-FC 6H4                                        | p-FC6H4                                         | <sup>a</sup> Melting poin<br><sup>c</sup> Solvents used<br><sup>d</sup> Lit. <sup>9</sup> mp 124°.<br>azide preparation<br>liberated from hy<br>be handled only<br>and H. Hempcl,<br><sup>n</sup> Lit. <sup>86</sup> mp 148°.<br>heating; lit. mp.<br>tetrazole by oxic<br>Ar = m-FC <sub>6</sub> H <sub>4</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

1-ARYLTETRAZOLES

NOVEMBER 1967

3583

o-nitrophenyltetrazole (10) in 50-60% yield.<sup>16</sup> This compound in turn can be reduced catalytically in dilute acid to the aniline 11. When the catalytic hydrogenation is carried out under neutral conditions, only the hydroxylamine 12 is obtained. On standing in solution or on warming, this hydroxylamine readily undergoes dehydration to produce the azobenzene 13. An attempt to reduce the o-nitrophenyltetrazole 10 with sodium sulfide in aqueous ethanol resulted in displacement of nitrogen from the tetrazole ring to produce 2-aminobenzimidazole (14).

We find that the mercaptotetrazole 9 rearranges rapidly in refluxing benzene to the thiatriazole 15 (Scheme III). This reaction appears to be the reverse



of the rearrangement of 5-anilino-1,2,3,4-thiatriazole to 1-phenyl-5-mercaptotetrazole in basic solution reported by Lieber, Pillai, and Hites.<sup>17</sup> When 15 is dissolved in cold base and the solution immediately acidified, unchanged 15 is precipitated. However, when the basic solution is warmed, rearrangement of anion 16 to 8 occurs and, on acidification of the solution, only 9 is obtained. These reactions are summarized in Scheme III.

On long heating of 15 in benzene or of 8 in aqueous base, nitrogen and sulfur are lost and o-nitrophenylcyanamide (o-nitrocarbanilonitrile) is obtained<sup>18</sup> (eq 2). This reaction is also applicable to the synthesis of phenyl- and m- and p-fluorophenylcyanamide, but yields are poor, apparently because of the instability of the product. This is yet another example of the facile thermal cleavage of 5-substituted thiatriazoles to yield nitrogen, sulfur, and a substituted nitrile. This reaction and the recent elegant syntheses of alkyl

cyanates<sup>19</sup> and cyanogen isothiocyanate<sup>20</sup> by the thermolysis of the corresponding thiatriazoles suggest that this thermolysis reaction may have general utility for the preparation of compounds with cyano groups on oxygen, sulfur, and nitrogen functions.

B. Chemical Reactions of 1-Aryl-5-chlorotetrazoles.—Very little has been reported on the chemistry of 1-aryl-5-chlorotetrazoles.<sup>3</sup> Recently, nucleophilic replacement of the chlorine by phenolate anions was reported and utilized in a valuable synthetic procedure for dehydroxylation of phenols.<sup>4°</sup> The 5-chlorotetrazole ring is not affected by catalytic reduction; a nitro group on the aryl ring can be catalytically hydrogenated to produce the corresponding aniline (2, Ar =  $C_6H_4NH_2$ ), which undergoes normal diazotization and coupling with  $\beta$ -naphthol. 1-Phenyl-5-chlorotetrazole is easily nitrated in the phenyl ring with fuming nitric acid. The position of nitration is chiefly *para*, as is reported for some other aryl tetrazoles.<sup>12,21</sup>

Decomposition of the tetrazole ring in 1-phenyl-5chlorotetrazole occurs chemically from attack by magnesium or butyllithium. No indication of a Grignard or lithium reagent was found on carbonation of the reaction mixture; the product isolated was phenylcyanamide. A reasonable route to such a product is through the anion  $18^{22,23}$  (eq 3). Reaction of 1-phen-

$$1 \xrightarrow{Mg \text{ or }}_{BuLi} ArN \xrightarrow{N}_{C} N \longrightarrow Ar\overline{N}CN + N_2 \quad (3)$$

yl-5-chlorotetrazole with triphenylphosphine in refluxing benzene also occurs with nitrogen evolution, but the product is complex and appears to contain N-phenylcyanamide. Stolle<sup>7b</sup> noted that reaction of this same tetrazole with sodium in ethanol resulted in the destruction of the tetrazole ring.

C. Thermal Decomposition Studies.—The thermal decomposition of tetrazoles has received considerable attention. 2,5-Disubstituted tetrazoles are a source of the 1,3-dipolarophiles,<sup>4</sup> RNN=+CX. Recently a careful study of the thermolysis of 5-aryltetrazoles<sup>24</sup> showed that ionization of the tetrazole was an important factor in the rate of decomposition and was influenced considerably by solvent. No satisfactory correlations with substituents were apparent. When thermally decomposed, 1,5-diaryltetrazoles were shown to rearrange to diarylcarbodiimides and 2-arylbenzi-

(21) J. v. Braun and W. Rudolph, Ber., 74, 264 (1941).

(22) Substitution of the bromine of 1-phenyl-5-bromotetrazole by phenylhydrazine is reported, but reaction of 1-phenyl-5-iodotetrazole with methylmagnesium iodide followed by benzoyl chloride is reported to give only N-phenyl-N-benzoylcyanamide and N<sub>2</sub>.<sup>7b,9</sup>

(23) R. A. Olofson [private communication; see J. Am. Chem. Soc., **38**, 4266 (1966)] finds that deuterium exchange of the 5-H of tetrazoles proceeds 10<sup>4</sup> faster than the rate of decomposition. However, direct comparison of results is not possible since our conditions involve irreversible anion formation whereas in the exchange experiment the anion is formed reversibly, probably in low concentration. In addition, magnesium, magnesium halide, or lithium halide in our system could promote decomposition of anion 18; alternatively a concerted attack-decomposition not involving 18 could explain the results.

(24) J. H. Markgraf, S. H. Brown, M. W. Kaplinsky, and R. G. Peterson, J. Org. Chem., 29, 2629 (1964).

<sup>(16)</sup> In the corresponding oxidations of 5-(m- and p-fluorophenyl)tetrazoles some disulfide was isolated (see Table I).
(17) E. Lieber, C. N. Pillai, and R. D. Hites, Can. J. Chem., 35, 832

 <sup>(1957).
 (1957).
 (18)</sup> Lieber and co-workers<sup>17</sup> noted a "violent" decomposition on heating

<sup>(18)</sup> Lieber and co-workers' noted a "violent" decomposition on heating unsubstituted 5-anilino-1,2,3,4-thiatriazole and the formation of nitrogen, sulfur, and an unidentified crystalline solid.

<sup>(19)</sup> K. A. Jensen and A. Holm, Acta. Chem. Scand., 18, 826 (1964); K. A. Jensen, M. Due, and A. Holm, *ibid.*, 19, 438 (1965); D. Martin, Angew. Chem. Intern. Ed. Engl., 3, 311 (1964).

<sup>(20)</sup> E. Lieber, E. Oftedahl, and C. N. R. Rao, J. Org. Chem., 28, 194 (1963).

$$\begin{bmatrix} \bar{A}r\bar{N}C = \bar{N} & \longleftrightarrow & Ar\bar{N} - C = \bar{N} \\ \downarrow & & \downarrow \\ Cl & & Cl \end{bmatrix}$$
19

The decomposition of 1-aryl-5-chlorotetrazole occurs rapidly at 170-180° and 1 mole of nitrogen is evolved. The rate of nitrogen evolution is first order. No tractable decomposition product was isolated or trapped by a variety of reagents such as nitriles or olefins. Rate of decomposition studies (by following nitrogen evolution, see Tables II and III) show that

#### TABLE II

Thermal Decomposition of Tetrazoles. The Effect of Solvent and Catalyst on 1-Phenyl-5-chlorotetrazole  $(5 \times 10^{-3} \text{ Mole in } 100 \text{ Ml of Solvent})$ 

Decomposition at  $171~\pm~1^\circ$ 

|                                                                        |                           | Average rate       |                |
|------------------------------------------------------------------------|---------------------------|--------------------|----------------|
|                                                                        |                           | constant,          |                |
|                                                                        |                           | $k_1 	imes 10^2$ , | Relative       |
| Solvent                                                                | Catalyst (ml)             | $\min^{-1}$        | rate           |
| HOCH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> OH  | • • •                     | 1.16               | 1.0            |
|                                                                        |                           | 1.11               |                |
|                                                                        | $H_2O(2)$                 | 1.15               | 1.0            |
|                                                                        |                           | 1.15               |                |
|                                                                        | $1 N CuSO_4 (2)$          | 2.97               | <b>2.6</b>     |
|                                                                        |                           | 2.54               |                |
|                                                                        | $1 N \text{ FeCl}_{3}(2)$ | 1.45               | 1.3            |
|                                                                        | 1 N NaOH (2)              | 0.88               | 0.8            |
|                                                                        | Cuprex, Cu                | 0.69               | 0.6            |
|                                                                        | $\mathbf{powder}$         |                    |                |
|                                                                        | Quartz powder             | 1.11               | 1.0            |
| EtOCH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> OH |                           | 2.52               | <b>2</b> . $2$ |
| BuOCH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> OH |                           | 2.97               |                |
| C <sub>6</sub> H <sub>5</sub> CN                                       |                           | 3.69               | 3.2            |
| Nujol                                                                  | • • •                     | 9.04               | 7.9            |
|                                                                        |                           |                    |                |

#### TABLE III

Effect of Substituent on Rate of Decomposition of 1-Aryltetrazoles (3–4 mmoles) in  $BuOCH_2CH_2OCH_2CH_2OH$ (100 ML) at 175 ± 1°

| ArN4                                            | CX4                                                       | Average rate<br>constant.    | Relative   |
|-------------------------------------------------|-----------------------------------------------------------|------------------------------|------------|
| 1-Ar                                            | 5-X                                                       | $k_1 \times 10^2, \min^{-1}$ | rate       |
| C <sub>6</sub> H <sub>5</sub>                   | Cl                                                        | 2.97                         | 1.0        |
| $m-\mathrm{H_2NC_6H_4}$                         | Cl                                                        | 2.26 - 1.62                  | 0.7        |
| $p-\mathrm{H}_2\mathrm{NC}_6\mathrm{H}_4$       | Cl                                                        | 2.23 - 1.69                  | 0.7        |
| m-O2NC6H4                                       | Cl                                                        | 56-70                        | 22         |
| p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> | Cl                                                        | 79 - 92                      | 29         |
| C <sub>6</sub> H <sub>5</sub>                   | $SO_2CH_3$                                                | 1.81 - 1.63                  | 0.6        |
| $C_6H_5$                                        | $SCH_3$                                                   | 2.09 - 1.95                  | 0.7        |
| C <sub>6</sub> H <sub>5</sub>                   | SO₃K                                                      | 1.10-0.99                    | 0.4        |
| C <sub>6</sub> H₅                               | $CH_3$                                                    | 0.04                         | 0.01       |
| C <sub>6</sub> H <sub>5</sub>                   | $\mathbf{NH}_2$                                           | 0.10                         | 0.03       |
| $C_6H_5$                                        | $C_{6}H_{5}$                                              | 0.08                         | 0.03       |
| $C_6H_5$                                        | p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub>           | 0.02                         | 0.07       |
| p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> | $C_6H_5$                                                  | 0.24                         | 0.08       |
| <sup>a</sup> Registry no                        | $\therefore 1 - \mathrm{Ar} = \mathrm{C}_6 \mathrm{H}_5,$ | $5-X = CH_3, 14213-$         | 16-2: 1-Ar |

 $= C_6H_5$ , 5-X = NH<sub>2</sub>, 5467-78-7.

decomposition is an order of magnitude faster in nonpolar solvents (mineral oil) than polar solvents (alcohol). No significant catalytic or surface effects are

(25) (a) P. A. S. Smith and E. Leon, J. Am. Chem. Soc., 80, 4647 (1958);
(b) J. Vaughan and P. A. S. Smith, J. Org. Chem., 23, 1909 (1958).

found; the largest effect observed is doubling of the rate by addition of copper salts. An electron-withdrawing substituent in the aromatic ring increases the rate of decomposition, but the effect is small; from the small number of substituents examined (*meta*- and *para*-amino and nitro), no quantitative correlation is apparent.

The rate of decomposition of the azido-azomethine form should be different from the tetrazole form; solvent and substituents do influence the position of equilibrium, but without much more extensive studies no definite conclusion about the mechanism of decomposition of tetrazoles can be drawn.<sup>26</sup>

**D.** Electronic Properties of Tetrazoles.—The electron density in tetrazoles has been calculated<sup>27</sup> and compared with dipole moment measurements.<sup>28</sup> Unfortunately, tautomeric equilibria (both tetrazole-azidoazomethine and proton position equilibria) complicate the nmr measurements and no definite picture of the electron density was obtained.

As pointed out earlier, electrophilic reagents attack the *para* position in the phenyl ring of aryltetrazoles. A phenyl ring in the 1 position of the tetrazole appears more susceptible to attack than one in the 5 position.<sup>21</sup> In electrophilic substitution, *para* orientation to a substituent with unshared electrons is expected and usually found, even when the substituent is inductively a strong electron-withdrawing group [for example,  $N(CF_3)_2$ ],<sup>29</sup> because, in attack by an electrophilic reagent, the requirements to stabilize a transition state by resonance conjugation override all other factors.

Quantitative data on the electronic character of tetrazoles have been obtained by standard  $pK_s$  measurements on the anilines (Table IV) and F<sup>19</sup> nmr meas-

|                     | Т     | ABLE IV                                            |          |             |
|---------------------|-------|----------------------------------------------------|----------|-------------|
| IONIZATION CONSTAN' | TS AN | d Substituent                                      | PARAMETI | ERS FOR     |
| ANILINES, WATER AT  | 25°,  | $\mathrm{RC}_{6}\mathrm{H}_{4}\mathrm{NH}_{3}^{+}$ | RC6H4NH  | $I_2 + H^+$ |
| R                   |       | $\lambda_{max}$                                    | $pK_a$   | σª          |
| N-N                 |       |                                                    |          |             |
| -N N                | meta  | 297                                                | 2.90     | 0.60        |
|                     | para  | 267                                                | 2.97     | 0.57        |
|                     |       |                                                    |          |             |
|                     | meta  | 294                                                | 2.58     | 0.72        |
| -n -c               |       |                                                    | 2.55     |             |
| Ĺ<br>Cl             | para  | 256                                                | 2.61     | 0.70        |

<sup>a</sup> Calculated using values of  $pK_a$  for an ilinium ion as 4.56 and  $\rho = +2.767$ .

urements on the aryl fluorides substituted in the *meta* and *para* positions by tetrazoles (Table V). The substituent parameters, calculated by the usual methods,<sup>30</sup> are summarized in Table VI; the data obtained for tetrazoles substituted in the 1 position by the aryl group and in the 5 position by H, Cl, N<sub>3</sub>, disulfide, OH,

(26) I. Ugi and R. Huisgen [Ber., 91, 531 (1958)] have studied the mechanism of decomposition of arylpentazoles and have shown that they can decompose from both the pentazole and open-chain aryldiazo-azide forms and that the rate of decomposition is enhanced by electron-withdrawing substituents.

(27) A. J. Owen, Tetrahedron, 14, 237 (1961).

(28) (a) M. H. Kaufman, F. M. Ernsberger, and W. S. McEwan, J. Am. Chem. Soc., 78, 4197 (1956); (b) K. A. Jensen and A. Friediger, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd., 20, No. 20, 1 (1943).

(29) W. A. Sheppard and F. S. Fawcett, J. Am. Chem. Soc., 87, 4341 (1965).

(30) (a) See W. A. Sheppard, *ibid.*, **87**, 2410 (1965); (b) The use of  $\sigma r$  and  $\sigma R$  parameters to evaluate the contribution by inductive and resonance effects is described by R. W. Taft, Jr., J. Phys. Chem., **64**, 1805 (1960).

|                     |           |        |          | -δ at infinite       | dilution relativ | e to C <sub>6</sub> H₅F i | n solvent, ppm  |                                 |
|---------------------|-----------|--------|----------|----------------------|------------------|---------------------------|-----------------|---------------------------------|
| Group               | )         | Isomer | Benzenea | Dioxane <sup>a</sup> | Acetonitrile     | $Acetone^a$               | Methanola       | CCl <sub>3</sub> F <sup>b</sup> |
| a. Tetrazoles       | X         |        |          |                      |                  |                           |                 |                                 |
| N=N                 | H         | meta   | 3.28     | 2.96                 | 3.23             | 3.17                      | 3.83            | I٩                              |
| -N N                |           | para   | 1.61     | 1.22                 | 2.06             | 1.72                      | 2.52            | I                               |
|                     | Cl        | meta   | 3.44     | 3.21                 | 3.51             | 3.36                      | 3,94            | I                               |
| x                   |           | para   | 3.63     | 3.42                 | 4.29             | 4.03                      | 4.61            | I                               |
|                     | $N_3$     | meta   | I        | 3.03                 | 3.28             | 3.15                      | <b>3</b> , $52$ | I                               |
|                     |           | para   | 1.99     | 1.93                 | 2.90             | 2.59                      | 2.94            | Ι                               |
|                     | bis(-SS-) | meta   | I        | 3.53                 | 3.81             | 3.63                      | I               | Ι                               |
|                     |           | para   | I        | 3.68                 | 4.44             | 4.13                      | I               | Ι                               |
|                     | -SH       | meta   | I        | 2.46                 | 2.61             | 2.43                      | 2.59            | I                               |
|                     |           | para   | I        | 1.58                 | 2.59             | 2.02                      | 2.39            | Ι                               |
|                     | -OH       | meta   | I        | I                    | I                | 2.61                      | 2.91            | I                               |
|                     |           | para   | I        | I                    | I                | 0.98                      | 0.14            | Ι                               |
| b. Other groups     |           |        |          |                      |                  |                           |                 |                                 |
| N-N                 |           | meta   | I        | 2.46                 | 2.39             | 2.23                      | 2.39            | Ι                               |
| -NHC <sup>*</sup> N |           | para   | I        | <b>4</b> .60         | -4.34            | -4.97                     | -4.43           | I                               |
| -NHCN               |           | meta   | 2.06     | 1.67                 | 2.00             | 1.83                      | 1.99            | Ι                               |
|                     |           | para   | -7.01    | -7.79                | -7.36            | -7.66                     | -7.36           | I                               |
| $-N = CCl_2$        |           | meta   |          |                      |                  |                           |                 | 1.42                            |
| $\mathbf{S}$        |           | para   |          |                      |                  |                           |                 | -3.15                           |
| 5 mm 400            |           | meta   | I        |                      | 1.44             | 1.14                      | • • •           | I                               |
| $-NHCNH_2$          |           | para   | I        |                      | -2.50            | -3.76                     |                 | Ι                               |

TABLE V F<sup>19</sup> NMR CHEMICAL SHIFTS FOR  $FC_6H_4Z$ 

<sup>a</sup> Calibrations run at 20, 10, and 5% concentration using 5% 1,1,2,2-tetrachloro-3,3,4,4-tetrafluorocyclobutane as internal standard. Chemical shift values for  $C_{6}H_{5}F$  relative to internal standard: benzene, -35; dioxane, -15; acetonitrile, +32; acetone, +15; methanol, +12 Hz at 56.4 mHz. <sup>b</sup> Trichlorofluoromethane used as solvent and internal calibrant. Chemical shift value of  $C_{6}H_{6}F$  relative to  $CCl_{3}F$  is 6382 Hz. <sup>c</sup> I—too insoluble for nmr measurements. <sup>d</sup> Registry no.: Z = -NHCN (meta), 14213-18-4; Z = -NHCN (para), 14213-19-5;  $Z = -N=CCl_{2}$ , (meta), 14213-20-8;  $Z = -NHC(=S)NH_{2} (meta)$ , 458-05-9;  $Z = -NHC(=S)NH_{2} (meta)$ , 458-05-9;  $Z = -NHC(=S)NH_{2} (meta)$ , 459-05-2.

or SH are reported; values for some other substituents are also given. From comparison of  $\sigma_m$  or  $\sigma_I$  values, the 1-tetrazoles all appear to be inductively strongly electron-withdrawing (of the same order as a nitro group but not so strong as a trimethylammonium), suggesting that the 1-nitrogen has lost considerable electron density and is highly positive in character. As expected, the 5-chloro substituent enhances this inductive effect (see Scheme IV and discussion below).



The variations in  $\sigma_{\rm I}$  values are not surprising since  $\sigma_{\rm I}$  values obtained from F<sup>19</sup> measurements often are significantly less than those obtained from reactivity or p $K_{\rm a}$  measurements.<sup>31</sup> However, from inspection of the  $\sigma_p$  or  $\sigma_{\rm R}$  values, no simple conclusion can be drawn about the resonance interactions from the 1 position of the tetrazole ring. Small electron return by resonance is seen from the p $K_{\rm a}$  measurements, but the F<sup>19</sup> nmr measurements show both donation and with-

(31) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, J. Am. Chem. Soc., 85, 709 (1963). drawal depending on the substituent in the 5 position. Resonance interactions to feed electron density into the aromatic ring can be described by **a** and are important in stabilizing the transition state for *para* attack in electrophilic substitution. Withdrawal of electron density by contributing forms such as **b** and **c** makes the tetrazole inductively electron withdrawing. The  $\pi$ -inductive mechanism<sup>32</sup> can cause enhancement of this electron withdrawal in the *para* position, but other secondary effects such as ring currents or  $p-\pi$ interactions<sup>30a</sup> can also contribute and cause small variations. The greater inductive effect of 5-chlorotetrazoles relative to tetrazole supports this picture since the inductive effect of chlorine should enhance the contribution of form **c**.

The interpretation of the parameters for the mercapto- and azidotetrazoles is discussed below in the section on molecular structure. However, measurements of substituent parameters for a series of 2- and 5-substituted tetrazoles are needed for a clear picture of the electron density in the rest of the tetrazole ring.

The  $\sigma$  values were also measured for several other groups found in intermediates or by-products of the tetrazole preparations or reactions. The N,N-dichloroazomethine group, N=CCl<sub>2</sub>, is very similar to the



(32) M. J. S. Dewar, "Hyperconjugation," The Ronald Press Co., New York, N. Y., 1962.

|    |                     | and Re        | LATED (             | Groups       | 5            |      |                       |
|----|---------------------|---------------|---------------------|--------------|--------------|------|-----------------------|
|    | Substitue           | nt            | Method <sup>a</sup> | $\sigma_m$   | $\sigma_p$   | σι   | σR OF σR <sup>0</sup> |
| a. | Tetrazoles          | X             |                     |              |              |      |                       |
|    | N-N                 | н             | Α                   | 0.60         | 0.57         | 0.57 | -0.03                 |
| N  | N N                 |               | $\mathbf{F}$        | 0.52         | 0.50         | 0.54 | -0.04                 |
|    |                     | Cl            | Α                   | 0.72         | 0.70         | 0.69 | -0.02                 |
|    | Ĭ                   |               | $\mathbf{F}$        | 0.60         | 0.61         | 0.58 | 0.03                  |
|    | х                   | $N_3$         | $\mathbf{F}$        | 0.54         | 0.54         | 0.55 | -0.01                 |
|    |                     | $\mathbf{SH}$ | $\mathbf{F}$        | 0.45         | 0.45         | 0.45 | 0                     |
|    |                     | OH            | $\mathbf{F}^{b}$    | 0.39         | 0.33         | 0.45 | -0.12                 |
|    |                     | bis(-SS-)     | $\mathbf{F}$        | 0.63         | 0.64         | 0.62 | 0.02                  |
| b. | Other group         | s             |                     |              |              |      |                       |
| -N | O <sub>2</sub>      |               | $\mathbf{A}^{c}$    | 0.71         | 1.27         | 0.68 | 0.67                  |
|    |                     |               | $\mathbf{F}^{d}$    | 0.67         | 0.78         | 0.56 | 0.22                  |
| -N | $(\mathbf{CF_3})_2$ |               | $\mathbf{A}^{e}$    | 0.47         | 0.53         | 0.44 | 0.06                  |
| +  |                     |               | $\mathbf{F}^{e}$    | 0.49         | 0.50         | 0.49 | 0.01                  |
| -N | $(CH_3)_3$          |               | $\mathbf{A}^{f}$    | 0.85         | 0.75         | 0.82 | -0.11                 |
|    |                     |               | $\mathbf{F}^{d}$    | 0.87         | 0.82         | 0.93 | -0.11                 |
| -C | ${}_{6}H_{5}$       |               | $\mathbf{A}^{g}$    | 0.12         | 0.11         | 0.14 | -0.04                 |
|    |                     |               | $\mathbf{F}^{d}$    | 0.04         | -0.01        | 0.08 | -0.09                 |
| -N | $= CCl_2$           |               | $\mathbf{F}^{h}$    | 0.21         | 0.13         | 0.29 | -0.16                 |
| -N | i=C≕O               |               | $\mathbf{F}^{e,h}$  | 0.27         | 0.19         | 0.36 | -0.17                 |
| -N | HCN                 |               | $\mathbf{F}$        | 0.21         | 0.06         | 0.37 | -0.31                 |
| _N | N-N N               |               | Б                   | 0.20         | 0 10         | 0.49 | 0.92                  |
|    | s                   |               | г                   | 0.00         | 0.19         | 0.42 | -0.20                 |
|    | O                   |               |                     |              |              |      |                       |
| -N | HCCH3               |               | $\mathbf{F}^{d}$    | 0.13         | 0.02         | 0.24 | -0.22                 |
|    | S                   |               |                     |              |              |      |                       |
| -N | HCNH₂               |               | F                   | 0.22         | 0.16         | 0.29 | -0.13                 |
|    |                     |               |                     | <b>T</b> 1 4 | <b>T</b> 4 4 |      |                       |

TABLE VI SUBSTITUENT PARAMETERS FOR TETRAZOLES AND RELATED GROUPS

<sup>a</sup> A from  $pK_a$  of anilinium ions. F from F<sup>19</sup> nmr chemical shift measurements in CH<sub>3</sub>CN unless indicated otherwise. <sup>b</sup> Solvent acetone. <sup>c</sup> See ref 41. <sup>d</sup> See ref 31 and 42. <sup>c</sup> See ref 29. <sup>f</sup> J. D. Roberts, R. A. Clement, and J. J. Drysdale, J. Am. Chem. Soc., 73, 2182 (1951). <sup>a</sup> E. A. Braude and F. C. Nachod, "Determination of Organic Structures by Physical Methods," Academic Press Inc., New York, N. Y., 1955, p 590. <sup>b</sup> Solvent CCl<sub>3</sub>F.

isocyanate group—electron withdrawing by induction but electron donating by resonance. This similarity suggests that contribution from the resonance forms shown is not important. The N-cyanoamino group, NHCN, is more deactivating inductively than an amide group, but is still strongly electron donating by resonance. The aminothiatriazole group, NHCN<sub>2</sub>S, is also similar to an amide but shows even larger inductive deactivation. Lieber and co-workers<sup>33</sup> suggested from ultraviolet measurements that this group is strongly electron withdrawing both inductively and by resonance and proposed resonance contributions by ionic structures such as **15a** and **15b**. However, no



 $Ar = C_6 H_4 S$ 

(33) E. Lieber, J. Ramachandran, C. N. R. Rao, and C. N. Pillai, Can. J. Chem., 37, 563 (1959).

forms can be drawn that would suggest resonance deactivation of the aromatic ring while the normal electron donation of the unshared electron pair on nitrogen into the aromatic ring is possible (15c) and could compete with donation into the thiatriazole ring. The contribution of forms 15a and 15b cannot be large since the  $\sigma_{\rm R}$  value for the aminothiatriazole group is comparable to that of an amide. The enhanced  $\sigma_{\rm I}$ value for this group could be from a ring current in the thiatriazole ring. However tautomeric structures 15d and 15e could also be present in solution. Indeed, the

$$15 \iff N^{-S} C = NAr \iff HN^{-S} C = NAr$$

$$10 \qquad H \qquad 1 \qquad HN^{-S} C = NAr$$

$$10 \qquad H \qquad N = N$$

$$15d \qquad 15e$$

similarity of substituent parameters for the thiatriazole to dichloroazomethine and isocyanate groups suggests that these tautomeric forms 15d and 15e (with azomethine structure) do make a significant contribution. Solvents appear to shift the tautomeric equilibrium (note solvent effects in Table V).

E. Infrared Spectral Correlations.—The infrared spectra of approximately 30 1-aryltetrazole derivatives were examined both in the solid state and in solution during the course of this work (see Table VII). Four prominent absorption bands at approximately 1210, 1090, 1000, and 960 cm<sup>-1</sup> were observed in these tetrazoles. In the 5-chlorotetrazoles the bands were shifted by 10–20 cm<sup>-1</sup> to higher frequency, while in the 5-azidotetrazoles and the 5-disulfides only small variable shifts were observed. In most cases the first three bands were strong and the 960-cm<sup>-1</sup> band was medium to weak, a characteristic band pattern which was usually easy to identify.

These correlations apparently are limited to 1-aryltetrazoles since a number of other tetrazoles which were examined (unsubstituted and 2-substituted) failed to show the band pattern. In addition, the pattern was not shown clearly for the six 5-mercaptotetrazoles studied, giving credence to the view of Lieber<sup>17</sup> that these compounds are not normal 5-mercaptotetrazoles. Lieber and co-workers<sup>16</sup> have noted that these 5-mercaptotetrazoles, which they characterize as tetrazolinethiones, exhibit medium intensity absorptions at about 1210 and 1170 and at 1270– 1300 cm<sup>-1</sup>. We also observe these bands in the mercaptotetrazoles as well as strong bands at about 1040 and 990 cm<sup>-1</sup>.

A similar question on the molecular structure of 1-aryl-5-hydroxytetrazoles has been discussed by Horwitz and co-workers.<sup>15b</sup> They report that such compounds exhibit strong infrared absorption in potassium bromide at 5.87–5.83  $\mu$  (1704–1714 cm<sup>-1</sup>) and conclude that the 1-aryl-5-hydroxytetrazoles in the solid state are best represented by the tautomeric tetrazolin-5one formulation with considerable intermolecular association through hydrogen bonding. We, too, find the strong carbonyl absorption at  $ca. 1710-1720 \text{ cm}^{-1}$ in potassium bromide wafers as well as in carbon disulfide solution. The absorption is displaced to ca.  $1740 \text{ cm}^{-1}$  in acetonitrile. In addition, the pattern of absorptions in the region of 950–1300  $\rm cm^{-1}$  is unlike that which we described above for normal 1-aryltetrazoles (see Table VII). The absorptions are, how-

| ArN                                              | Z.                              |                    |                    |               |        |       |       |                     | 1        |           |                |               |        |               |
|--------------------------------------------------|---------------------------------|--------------------|--------------------|---------------|--------|-------|-------|---------------------|----------|-----------|----------------|---------------|--------|---------------|
| Ar' X                                            | X                               | Medium             |                    |               |        |       | Ab    | sorption banda.e cm |          |           |                |               |        | (             |
| C <sub>6</sub> H <sub>6</sub>                    | н                               | KBr                |                    | 12085         | 1192m  | 1176w |       | 10948               | 10       | 80w 10481 | đ              | 966/666       | 80     | 9628          |
|                                                  |                                 | CS:                |                    | 11998         | 1179w  | 1171w |       | 10878               |          | 10371     | в              | 996s          |        | 951 <b>m</b>  |
|                                                  |                                 | CH,CN              |                    | 1206s         |        |       |       | 10948               | 10       | 80w       |                | 997s          |        | 961 m         |
|                                                  |                                 | Acetoned           |                    | ¢             |        |       |       | đ                   | 10       | 80m 10371 | 80             | 997 <b>s</b>  |        | 969m          |
| m-CoH4F                                          | Н                               | KBr                | 12448°             | 11938         | 1174m  | 1157w |       | 10938               | 10       | 45w 1034v | •              | 1008/10       | 048    | 962m          |
|                                                  |                                 | CS,                | 12386              | 11798         |        | 1149w |       | 10828               |          |           |                | 9988          |        | 948w          |
|                                                  |                                 | CH <sub>1</sub> CN | 12348°             | 11818         |        | 1152m |       | 10898               |          |           |                | 1009/10       | 03s    | 959m          |
|                                                  |                                 | Acetoned           |                    | e,            |        |       |       | đ                   |          |           |                | 1007/10       | 02a    | 966m          |
| p-C <sub>6</sub> H <sub>4</sub> F                | н                               | KBr                | 12448°             | 1215s         | 1185m  | 1160m |       | 1101/10848          | 10       | 43m       |                | 10028         |        | 969m          |
|                                                  |                                 | CS,                | 1241s <sup>e</sup> | 1196m         | 1186m  | 1152m |       | 10848               |          | 10271     | g              | 9968          |        | 960w          |
|                                                  |                                 | CH <sub>5</sub> CN | 12348°             | 11818         |        | 1152m |       | 10898               |          |           |                | 1000/10       | 03e    | 967 m         |
|                                                  |                                 | Acetone            |                    | q             |        |       |       | q                   |          |           |                | 1001/10       | 02a    | 955m          |
| o-C4H4NH1                                        | н                               | KBr                |                    | 12058         | 1188m  | 1166w | 1144m | 11008               | 10       | 47w       |                | 10038         |        | 971m          |
| m-C <sub>6</sub> H <sub>4</sub> NH <sub>3</sub>  | H                               | KBr                | 1262s              | 12058         | 1190s  | 1168m |       | 10958               | 10       | 51m 1016r | -              | 994s          |        | 970m          |
| p-C <sub>3</sub> H <sub>4</sub> -NH <sub>3</sub> | H                               | KBr                |                    | 12058         |        | 11689 |       | 10923               | 10       | 38m 1015r | а              | 396m          |        | 966m          |
| 0-C <sub>6</sub> H₄-NHOH                         | Н                               | KBr                |                    | 11988         |        | 1165m | 1122w | 10945               | 10       | 33m 1019r | а              | 996s          |        | 971m          |
| m-C <sub>6</sub> H <sub>4</sub> NO <sub>1</sub>  | Н                               | KBr                |                    | 12188         | 1189m  |       |       | 1094/1090           | 10       | 53m 1012r | 8              | 998m          |        | 965m          |
| p-C.H.NO.                                        | Н                               | KBr                |                    | 12128         |        |       | 1110m | 10888               |          |           |                | 9938          |        | 966m          |
| o,o'-azobenzenebis-                              | Н                               | KBr                | 1228w              | 12058         | 1165m  |       | 1129s | 10868               | 10       | 42w 1024r | a              | 996s          |        | 969m          |
| C.H.                                             | CI                              | KBr                |                    | 12428         | 1171w  |       |       | 11158               | 10       | 73m 1040r | a              | 10158         |        | 975m          |
|                                                  |                                 | CS,                |                    | 12448         |        |       |       | 1100m               | 10       | 75w 1055v | v 1040w        | 1016m         |        | 97 <b>3m</b>  |
|                                                  |                                 | CH <sub>3</sub> CN |                    | 12448         | 1176w  |       |       | 11138               | 10       | 80m       |                | 10158         |        | 979ms         |
|                                                  |                                 | Acetone            |                    | er i          |        |       |       | 11078               |          |           | 1044mw         | 10158         |        | 977s          |
| m-CsH1F                                          | G                               | KBr                |                    | 1269ac? 1260a | 11888  | 1155w |       | 11158               | 10       | 81/1075m  | 1042m          | 1007w         |        | 977 ms        |
|                                                  |                                 | CS,                |                    | 1269c?/12618  | 1215w  | 1193s | 1155m | 1100s               |          | 10581     | a 1039w        | 1006w         |        | 971m          |
|                                                  |                                 | CH,CN              |                    | 12638         |        | 1193s | 1159m | 11108               |          |           |                | 1006m         |        | 978e          |
|                                                  |                                 | Acetone            |                    | 12618         |        |       | 1157m | 11078               | 10       | 69m       | 1045m          | 1007w         |        | 977m          |
| p-C <sub>6</sub> H.F                             | ũ                               | KBr                | 1261m°             | 12458         | 12218  | 11568 |       | 1113/11108          | 10       | 69w 1032s |                | 10128         |        | 978 <b>s</b>  |
|                                                  |                                 | CS,                |                    | 1250/12388    |        |       | 1156m | 1106/1095 <b>m</b>  | 10       | 58w 1032r | -              | 1013m         |        | 974w          |
|                                                  |                                 | CHACN              |                    | 1250/12278    |        |       | 1159s | 1118/10998          |          |           |                | 1013 <b>m</b> |        | 979m          |
|                                                  |                                 | Acetone            |                    | 1269/1255s,br |        |       | 1159s | 11118               | 10       | 67m       | 10368          | 10148         |        | 975s          |
| m-CoH4-NH2                                       | ũ                               | KBr                |                    | 12248         |        |       | 1161m | 11138               | 10       | 75m       | 1047 ms        | <i>995</i> s  |        | 986m          |
| p-C.HNH2                                         | ច                               | KBr                |                    | 12448         |        |       | 1179m | 1113m               | 10       | 89w 1072v | r 1040w        | 10078         |        | 98 <b>2</b> m |
| 0-CeH4NO1                                        | ซ                               | KBr                |                    | 12428         |        | 1168w | 1148w | 1098s               |          | 1066v     | r 1042w        | 1021 m        |        | 975m          |
| m-CeH4NO1                                        | 5                               | KBr                |                    | 12478         |        | 1164w |       | 1110/11028          | 10       | 83m 1073v | r 1049m        | 1003w         |        | 978m          |
| p-C.H.NO?                                        | G                               | KBr                |                    | 12478         |        |       | 1172w | 1113m/1100s         | 10       | 67m 1029n | •              | 10108         |        | 979m          |
| p-C.H. bis-                                      | Ū.                              | KBr                | 1259m              | 12428         | 1228m  |       | 1121m | 10968               | 10       | 71m 1038n | -              | 10078         |        | 979ms         |
| Cells                                            | SCH.                            | KBr                |                    | 12458         | 1167w  |       |       | 10968               | 9        | 78s 1064v | r 1044m        | 1015ms        | 988 ms | 9788          |
| C <sub>6</sub> H <sub>6</sub>                    | SO <sub>2</sub> CH <sub>2</sub> | KBr                | 1269w              | 12330         | 11598  |       | ļ     | 1107 mw             | 10       | 74m 1055r |                | 1018m         | 9648   | 9558          |
| CeH                                              | SOAK                            | KBr                |                    | 1253/1245a    | 1174m  | 1160w | 1152m | 11148               | 1100w 10 | 83s 1073n | a 1050w 1037mw | 1016m         | 990w   | 976w          |
| CeHt                                             | C <sub>6</sub> H <sub>6</sub>   | KBr                |                    | 127.18        | 1182w  | 1163m | 11478 | 11078               | 1068s 10 | 53m 1038v | r 1026m        | 10088         |        | 987 m         |
| CeH                                              | p-CeHI-NO2                      | KBr                |                    | 1 <b>263m</b> | 1168mw |       | 1134m | 11098               | 1075m    | 10130     | n 1006m        | 10008         |        | 968w          |
| C.H.                                             | N3                              | KBr                |                    | 11968         | 1175w  | 1107w |       | 10888               | 01       | 71m       |                | 1010 <b>m</b> |        | 984m          |
|                                                  | ľ,                              | CS:                |                    | 11953         |        |       |       | 10948               | 10       | 83m 1066n | a 1046w        | 1018m         |        | 982m          |
|                                                  | "N                              | CHICN              |                    | 11998         |        |       |       | 1099/1090           |          | 1071      | -              | 1015m         |        | 98 <i>õ</i> m |
|                                                  | N,                              | Acetone            |                    | 9             | 1174m  |       |       | с<br>1 лог,         |          | 10698     |                | 10168         |        | 985m          |
| p-CitaiNU2                                       | N3                              | KBr<br>20          |                    | 11818         | 1121m  |       | 11001 | 10898               |          | 10401     | -              | m4001         |        | 978mw         |
|                                                  | N <sup>3</sup>                  | CS:                |                    | 11868         |        |       | IIIIm | 10868               |          | TUCOUL    | -              | 1013m         |        | 976w          |

TABLE VII Major Infrared Absorption Bands for 1-Arylyfetrazoles from 950 to 1270 Cm<sup>-1</sup>

| m-CeH4F N <sub>1</sub> Acet<br>m-CeH4F N <sub>1</sub> KBr<br>P-CeH4F N <sub>1</sub> CS <sub>3</sub><br>CH4<br>Acet<br>bis(m-CeH4F) -SS- KBr<br>bis(p-CeH4F) bis(-SS-) KBr<br>CS <sub>1</sub><br>CH4<br>CS <sub>1</sub><br>CH4<br>CS <sub>1</sub><br>CS <sub>1</sub> | one                       |        | 1172m             | 4          |              |                | ġ          |            | 1035w             |                   | 101           | 38       | 380m        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|-------------------|------------|--------------|----------------|------------|------------|-------------------|-------------------|---------------|----------|-------------|
| m-CaH4F N, KBr<br>p-CaH4F N, KBr<br>CS4<br>CS4<br>CS4<br>CS4<br>CS4<br>CS4<br>CS4<br>CS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sun C                     |        |                   | 4<br> <br> |              |                |            |            |                   |                   |               |          |             |
| m-Cattir N1 CS:<br>p-CaHdF N1 CS:<br>Aceta<br>bis(m-CaHdF) -SS- KBr<br>CH4<br>bis(p-CaHdF) -SS- KBr<br>CH4<br>bis(p-CaHdF) bis(-SS-) KBr<br>CH4<br>CS:<br>CH4<br>CS:<br>CH4<br>CS:<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CN                        |        |                   | 1170       | 1160m 11     | 155w           | 1094ms     | 1084       | n<br>1            | 069m              | 1000          | m        | 983w        |
| p-CaH4F N, CH4<br>P-CaH4F N, Acet<br>Acet<br>bis(m-CaH4F) -SS- KBr<br>CH4<br>bis(p-CaH4F) bis(-SS-) KBr<br>CH4<br>CH4<br>CH4<br>CH4<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CN                        |        | 12005             | 00111      | 1167-        |                | 1006       | 1086       | m 1069m           |                   | 1001          | a        | 981 w       |
| p-CaHdF Na Active Activ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC                        |        | 12128             | 86/11      | <b>Ш/011</b> |                | 5000       | 1006       | m 1076.           |                   | 1006          | at       | 98bw        |
| р-СаН4F N, Aceto<br>Be-CaH4F N, KBr<br>CH4<br>CH4<br>Aceto<br>Aceto<br>Aceto<br>bis(р-CeH4F) -SS- KBr<br>CH4<br>bis(р-CeH4F) bis(-SS-) KBr<br>CSA <sup>6</sup><br>CH4<br>Aceto<br>CH4<br>CSA <sup>6</sup><br>CH4<br>CH4<br>CSA <sup>6</sup><br>CH4<br>CH4<br>CH4<br>CH4<br>CH4<br>CH4<br>CH4<br>CH4<br>CH4<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |        | 12168             | 11838      | mnorr        |                | 84011      | 1001       | The second second |                   | 1001          |          | 98.8 m      |
| <ul> <li>p-CaHd.F</li> <li>bis(m-CaHd.F)</li> <li>N, KBr</li> <li>CHA</li> <li>CHA</li> <li>CHA</li> <li>Aceta</li> <li>Aceta</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one                       |        | q                 | 1172s      | 1157s        |                | 1102m      |            | 10/48             |                   | 101           |          | 08 fan      |
| bis(m-CeH4F) -SS- CH4<br>bis(m-CeH4F) -SS- KBF<br>CH4<br>bis(p-CeH4F) bis(-SS-) KBF<br>CH4<br>CH4<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1241sc                    |        | 12068             |            | 1159m        |                | 1109/1095m |            | 1084m             |                   | 2101          | <i>m</i> | m 100       |
| bis(m-CeH4F) -SS- CH4<br>Aceta<br>Aceta<br>Aceta<br>Bis(p-CeH4F) -SS- KBr<br>CH4<br>bis(p-CeH4F) bis(-SS-) KBr<br>CH4<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1930.00                   |        | 110%              |            | 1157m 13     | 105w           | 1093m      |            | 1075mw            |                   | 1015          | mm       | 981 W       |
| bis(m-CaH4F) -SS- KBa<br>KBa<br>CS4a<br>CS4a<br>CH4<br>bis(p-CaH4F) bis(-SS-) KBr<br>CH3<br>CH4<br>CH4<br>CH4<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1001 1001 100             | 00     | -000 F            |            | 1160a 11     | 10m            | 10.988     |            |                   |                   | 101           | ur an a  | 986w        |
| bis(m-C <sub>6</sub> H <sub>4</sub> F) –SS– KBr<br>KBr<br>CS <sub>4</sub><br>CH <sub>4</sub><br>bis(p-C <sub>6</sub> H <sub>4</sub> F) bis(-SS–) KBr<br>KBr<br>CS <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UN 12418° 122             | -80    | 80011             |            | 1160-011     | 00             |            |            | 1079m             |                   | 1016          | m        | 98bmw       |
| bis(m-CeH4F) -SS- KBr<br>CB4e<br>CH4e<br>Dis(p-CeH4F) bis(-SS-) KBr<br>CSa<br>bis(p-CeH4F) bis(-SS-) KBr<br>CSa<br>CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | one                       |        | 9                 |            | 1 20021      | TTENT          | -1001      | 1084       | m 1050m 1         | 040w              | 1006          | a        | 982/977w    |
| CSA <sup>6</sup><br>CH4<br>CH4<br>CH4<br>Acet<br>Acet<br>Acet<br>Acet<br>CSA <sup>1</sup><br>CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 1261/1255               | 80     | 11968             |            | m/611        |                | 84601      | TOOT       | 1 110001 110      | 044               |               |          | <b>m766</b> |
| CH <sub>4</sub><br>CH <sub>4</sub><br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Aceto<br>Ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1269 <sup>ge</sup>        |        | 12368             |            | 1156m        |                | 1100w      |            | -                 | MAEN              | 7001          |          | 08.00       |
| Aceto<br>bis(p-CeH.F) bis(-SS-) KBr<br>CSp <sup>1</sup><br>CSp <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CN 1269s <sup>c</sup> 123 | 19.m   | 11908             |            | 1159m 1)     | 117m           | 1096m      |            |                   |                   | 0001          |          | 000         |
| bis(p-CeH.F) bis(-SS-) KBr<br>CSA <sup>p</sup><br>CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | one 1261sc                |        | 11768             |            | 11568        |                | 1116m      | 1076       | w 1058s 1         | 043m              | 1001          | m.       | 2000        |
| CHat Contract (Contract (CHat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |        | 1007.00           |            | 1157ms 11    | 105m           | 1093m      | 1066       | iw 1056w 1        | 031m              | 1012          | m        | 986w        |
| CB2 <sup>6</sup><br>CH <sub>2</sub> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |        | - 0507            |            | 1167         |                | 1006%      |            | 1                 | 031w              | 1012          | mm       | 987w        |
| CHr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |        | 12368             |            | 111/011      |                |            |            |                   |                   | 101           | m        | 985 m       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CN                        |        | 1230vs            |            | 11608        |                | 10997118   | 1001       |                   |                   | 101           |          | 980m hr     |
| Acet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one                       |        | e,                |            | 11578        |                | 1109w,br   | 1901       | T TILLION T M.    | Electron Electron | 1000          |          | 000-        |
| C.H. SH KB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |        | 1 077 / 1 97 1 8  | 1209ms     | 11           | .66w           |            | 1102/1093w | 1073w             | 10498             | 1002          | MUL      | 9528        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |        | AT 1917 / 1197    | 1908-      | : :          | 5.64           |            | 1101/1093w | 1071w             | 10448             | 1002          | w        | 982s        |
| COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |        | 80021             | 00071      |              |                |            |            |                   |                   |               |          |             |
| CHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CN                        |        |                   |            |              |                |            |            |                   | r                 |               |          | 98.6*       |
| Acet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one                       |        | 12698             |            |              | đ              |            | 11028      |                   | 3                 | 2001          |          | -000        |
| m_C.H.F. SH KB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 12538  | 1 2.12s           |            | 1176s 11     | 51m            |            | 1090m      | 1076w             | 1048              | 95<br>        | M        | 8066        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1967   | 10170             |            | 1183. 11     | , <i>E</i> .6m |            | ď          |                   | 10423             | 1025          | 2m 1006w | 996s        |
| Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 120/18 | 8/421             |            |              |                |            | 1006       |                   | ~                 |               | 1007w    | 993m        |
| CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CN                        | 12648  | 1242ma            |            | 11 82811     | m/a            |            | MOROT      | 1001              | 1010              |               | 1005w    | 988 m       |
| Acete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | one                       | 1262ms | ° d               |            | 1176m /i     | 156ms          |            |            | 108120            | et al             |               | 10101    |             |
| A-C.H.F SH KB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1272ac | 12368             | 1215ms     | 11           | (59ms          |            | 1096 mw    | 1082m             | 10481             | n.8           | 1018101  | 9938        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1999me | 1096.             | 1218w      | 11           | ,60m           |            | 1101w      | 1084w             | 1055/             | 1044m         | 1022w    | 993m        |
| 25Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 117071 | 8002T             | -0101      |              | . 60           |            |            |                   | ų                 |               |          | 992m        |
| CHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CN                        | 12668  | 12288             | WZ121      |              | 10.210         |            | n          |                   | 10170             |               | 1014w    | 988s        |
| Acet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | one                       | 12728  | ď                 |            | Ι.           | 15971          |            | 3          | 0001              | -101              | 10.01         | 1008     | 980.        |
| 0-CeH4-NO, SH KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |        | 1266m             | 1227 m     | 1,           | 160m           | 1140m      | 1101m      | <b>WINROT</b>     | 10401             | 10701         |          | 0000        |
| 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |        |                   |            |              |                |            |            |                   |                   |               |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1997.  | 1.000             | 1919 m     |              |                | 1144w      | 1101w      |                   | 10478             | 72.           |          | 9878        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1000   | m.coz1            | ******     |              |                | 1145m      |            |                   | 10478             | 101           | W.       | 985s        |
| Acet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tone                      | 87.67T | 12630             |            |              | 001            | TOTI       | 1006       |                   | 1051-             |               |          | 998m        |
| m-CeH4NO1 SH KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |        | 12748             | 1221m      | Ι.           | 163 <i>w</i>   | M2011      | 10001      |                   | -2301             | . 1           |          | 1000        |
| CS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |        | 12748             | 1222m      |              | q              | MINIM      | 10201      |                   |                   | *             |          |             |
| CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC                        |        | 12668             | 1224ms     | 1.           | 167w           | 1094m      |            |                   | r                 |               |          | 111266      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |        | 1 066.0           | P          |              | р              |            |            |                   | 1044              | 1000          | 3w       | 987m        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |        | 107 5.000         | 1918m      |              | 17600          | 1127 w     | 1113m      | 1087m             | 10454             | 1010          | w(       | $993m_{8}$  |
| p-Centinus an Abr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |        | 5 1 2 1 0 1 1 2 T |            | •            |                |            | 1112m      | 1087 m            | 10448             | 101:          | ŚW       | <b>992m</b> |
| CB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |        | 12/4m             | 110121     | •            | m#11           |            |            | 1002.00           |                   | 101           |          | 982ms       |
| CHr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CN                        |        | 12718             | 1211m      |              | ¢              |            | 1110111    | MPEOT             |                   | 5101          |          | 085.        |
| Acet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tone                      |        | 12698             | q          |              | d              |            | 01111m     | 1082w             | 1044              |               | M        | 8000        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1790-1                    |        | 101100            |            | 1155m 1      | 1 1.9s         |            | 1106w      | 1082m             | 1060,             | /10508 991    | a l      | 973s        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1120                      |        | m 1421            |            | 1 101-1      |                |            | 1103.      |                   | 1057              | ms 1037       | 7m       | 9718        |
| m-C6H4F OH KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1715                      |        | 1232/12208        |            | / SHITOIT    | snu.off I      |            | TTOOTT     |                   | 1055              |               |          | 978/968.    |
| CS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1718                      |        | 12568/1241m       | 1214m      | 1157m 1.     | 149/11428      |            |            |                   | 0001              |               |          | 1000        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |        |                   | 1199s      |              |                |            |            |                   |                   |               |          | 4           |
| THU .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CN 1745                   |        | 1 2.20.           |            | 1            | 1575           |            | 1096m      |                   | q                 |               |          | 9638        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |        | E F               |            | -            | 160.           |            |            |                   | 1056.             | s 103:        | 3ms      | 960s        |
| Acel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tone a                    |        | 8                 | 0077       | • •          | - 07           |            |            | 1078m /11         | 1050ma 1050       |               | 1004m    | 971s        |
| p-CeHeF OH KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1712                    |        | 12588             | 11998      | 1            | 8ct/1          |            |            |                   | 10501             |               |          | 96.8hr      |
| CS <sup>1</sup> <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 1715°                   |        | 12368             | q          | -            | 161/11478      |            |            |                   | opor              | 5             |          | 0007000     |
| CH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CN 1742*                  |        | 12458             | 1192m      | 1            | 1488           |            |            |                   | 1050              | 8, <b>D</b> T |          | 8006/206    |
| tore A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |        | . "C              | Ч          | d 1          | 1478           |            |            |                   | 1053              | /10388        |          | 966/959s    |
| 1937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n anno                    |        | 5                 | 9          | 5            |                |            |            |                   |                   |               |          |             |

# 1-ARYLTETRAZOLES

shoulder. <sup>6</sup> Very low solubility; detectable absorption bands are noted. <sup>e</sup> C-F absorptions. <sup>d</sup> Solvent interference. <sup>e</sup> Carbonyl absorption frequency. <sup>A</sup> Integraty no.: At =  $C_{eH_5}$ , X =  $SCH_3$ , 1455-92-1; Ar =  $C_{eH_5}$ , X =  $SO_2CH_3$ , 3206-44-8; Ar =  $C_{eH_5}$ , X =  $SO_4H_3$ , T477-73-8; Ar =  $C_{eH_5}$ , X =  $P-C_6H_4$ , No.; 14213-27-5; Ar =  $C_6H_5$ , X =  $SCH_3$ , 1455-92-1; Ar =  $C_6H_5$ , X =  $SO_2H_4$ ,  $SO_2-44-8$ ; Ar =  $C_6H_5$ , X =  $SO_4H_3$ , T477-73-8; Ar =  $C_6H_5$ , X =  $P-C_6H_4$ , NO.; 14213-27-5; Ar =  $C_6H_5$ , X = SH (**9a** form), 86-93-1; Ar =  $C_6H_5$ , X = SH (**9a** form), 1483-17-6; Ar =  $C_6H_5$ , X = OH (9b form), 5097-82-5.

ever, very similar to those of the 1-aryl-5-mercaptotetrazoles, suggesting that the heterocyclic nuclei of these two classes of compound are very similar. This question will be discussed further in the next section.

The four 5-anilino-1,2,3,4-thiatriazoles examined exhibited strong absorptions at 1270-1300 and 1070-1100  $cm^{-1}$  and weaker absorptions at 930–950  $cm^{-1}$ , which have been assigned by Lieber to skeletal vibrations of the thiatriazole ring. In addition these compounds exhibited the strong absorptions at ca. 1550-1600 cm<sup>-1</sup> that were observed by Lieber.<sup>15a</sup> (The band at ca. 1700  $\rm cm^{-1}$ , tentatively assigned by Lieber to an exocyclic C=N absorption, was absent in the four compounds reported here.)

F. Molecular Structure.--We have alluded several times in the above discussions to the question of tautomeric equilibria between the tetrazole and azidoazomethine forms (see, for example, 2 and 7 or 3 and 4) and the mercaptotetrazole vs. tetrazolinethione forms (see 9a and 9b). For 1-aryltetrazoles and 1-aryl-5chlorotetrazoles no azide absorption is observed in the infrared either in the solid state or in a variety of solvents including acetone and trifluoroacetic acid. For the 1-azidotetrazole, criteria other than azide absorption band are needed. In these cases, however, the absorption bands between 960 and 1210  $cm^{-1}$  characteristic of 1-aryltetrazoles are present. Furthermore the electronic properties  $(\sigma_m \text{ and } \sigma_p)$  of the 5-azidotetrazole group are intermediate between those of the tetrazole and 5-chlorotetrazole groups (see Table VI). Solvent studies on the F<sup>19</sup> nmr chemical shift for the aryl fluorides show no abnormal behavior relative to the other tetrazoles (see Table V). We conclude that if an equilibrium exists between the azidomethine and tetrazole forms, it must lie very far on the side of the tetrazole both in the solid state and in solution for all 1-aryltetrazoles examined in the present study.

The position of the hydrogen atom in the mercaptotetrazoles is not as clearly defined. The infrared studies suggest that the normal 1-aryltetrazole system is not present. The electronic character of the group also supports this conclusion since the inductive effect  $(\sigma_1 0.45)$  of the group is significantly less than that of other 5-substituted tetrazoles (particularly note the disulfides for comparison; however both groups show no resonance effect) and the solvent effects on F<sup>19</sup> chemical shifts vary from the pattern for other tetrazoles (see Table V). The molecular weight is that of a dimer in benzene but that of a monomer (or less because of ionization) in dimethyl sulfoxide. We conclude that this tetrazole system may exist as a hydrogen-bonded dimer, 20 (like carboxylic acids), in the



solid state or in weakly polar solvents. In this dimeric form the tetrazole ring has lost a certain amount of the resonance properties characteristic of the 1-aryltetrazole system so that the 1-nitrogen is not so positive.

As discussed above, the 1-aryl-5-hydroxytetrazoles have also been reported to exist as the tautomeric tetrazolin-5-one in the solid state because of a strong infrared absorption at ca. 1710  $\text{cm}^{-1}$  assigned to the carbonyl function;<sup>15b</sup> we have confirmed this observation for several 1-aryl-5-hydroxytetrazoles. The substituent parameters for the 5-hydroxytetrazole group  $(\sigma_{\rm I} 0.45 \text{ and } \sigma_{\rm R} - 0.12)$  indicate that the 1-nitrogen has less positive character than in the other tetrazoles with the unshared pair of electrons more available for resonance contribution to the phenyl ring. Thus, the heterocyclic ring is much less aromatic and more like an amide group ( $\sigma_{I}$  0.24 and  $\sigma_{R}$  -0.22). However, the molecular weight in benzene is that of a dimer; hydrogen-bonded association should be more effective in the hydroxytetrazole than in the mercaptotetrazole (like carboxylic compared to thiocarboxylic acids) with the proton more closely associated with the ring nitrogen than with the oxygen.

### **Experimental Section**

All melting points are corrected. Proton nmr spectra were obtained with a Varian A-60 spectrometer. Saturated deuteriochloroform solutions with tetramethylsilane as an internal standard were used unless otherwise noted. Peak center positions are reported as  $\tau = 10 - \delta_H$  ppm; the number of protons (by integration) is given in brackets. Infrared spectra were determined in potassium bromide wafers with a Perkin-Elmer 21 spectrophotometer unless otherwise noted. Prominent peaks are noted. Ultraviolet spectra were determined in ethanol unless otherwise noted.

Starting Materials.—Activated sodium azide<sup>34</sup> was prepared by a simplified procedure obtained from Dr. F. D. Marsh of this laboratory. A solution of 10 g of commercial sodium azide in 30 ml of water was treated with 1.0 g of hydrazine hydrate. The solution was stirred for 15 min and was filtered into 400 ml of acetone. The precipitated sodium azide was separated by filtration, washed with acetone, and dried with a stream of nitrogen. It was stored in a tightly stoppered bottle under nitrogen and was used within 2 weeks.

Aryl isothiocyanates were prepared from the corresponding anilines and thiophosgene.<sup>35a</sup> N-Aryldichloroazomethines were generally prepared by chlorination of the corresponding aryl isothiocyanates;<sup>35b</sup> N-(m-nitrophenyl)dichloroazomethine was prepared by chlorination of m-nitrophenylformanilide in thionyl chloride.36

N-(o-Nitrophenyl)dichloroazomethine.—Only the following procedure gave a satisfactory product. A solution of 50 g of o-nitrophenylisothiocyanate in 1 l. of methylene chloride was treated overnight with a slow stream of chlorine. Nitrogen was passed through the reaction mixture to remove excess chlorine. The solution was filtered and the filtrate was concentrated at reduced pressure using a water pump protected by a trap cooled to  $-80^{\circ}$ . The resulting viscous oil slowly crystallized. (The oil must not be warmed above 30°. Vigorous exothermic decomposition occurs above this temperature.) The crystals were dried on a clay plate. The crude N-(o-nitrophenyl)dichloroazomethine weighed 24.5 g after washing with hexane. Recrystallization from methylene chloride-hexane produced colorless crystals (21.4 g, 34%) which melted at 81.5–82.5°:  $\lambda_{\text{max}}^{\text{velohexane}}$  303 m $\mu$  ( $\epsilon$  2650), 250 (6720).

Anal. Caled for  $C_7H_4Cl_2N_2O_2$ : C, 38.4; H, 1.84; N, 12.8; Cl, 32.4; mol wt, 219. Found: C, 39.1; H, 2.21; N, 13.0; Cl, 32.7; mol wt, 219 (cryoscopic benzene).

N-(p-Fluorophenyl)dichloroazomethine [bp 77° (9 mm), n<sup>25</sup>D 1.5440] was prepared by chlorination of the *m*-fluorophenyl isothiocyanate in dichloromethane at 25° and is also a new compound in this class.

 <sup>(34)</sup> P. A. S. Smith, Org. Reactions, 3, 382 (1946).
 (35) (a) G. M. Dyson, "Organic Syntheses," Coll. Vol. I, 2nd ed, John Wiley and Sons, Inc., New York, N. Y., 1952, p 165; (b) D. B. Murphy, J. Org. Chem., 29, 1613 (1964).

<sup>(36) (</sup>a) R. S. Bly, G. A. Perkins, and W. L. Lewis, J. Am. Chem. Soc.,
44, 2896 (1922); (b) for a review of syntheses and reactions of N-aryldichloroazomethines, see E. Kühle, Angew. Chem. Intern. Ed. Engl., 1, 647 (1962).

Anal. Calcd for C<sub>7</sub>H<sub>4</sub>Cl<sub>2</sub>FN: C, 43.8; H, 2.10; F, 9.9; Cl, 36.9. Found: C, 44.0; H, 2.06; F, 10.6; Cl, 37.0.

A. Synthesis. 1. 1-Aryl-5-chlorotetrazoles.—The following example illustrates the general method used to prepare 1aryl-5-chlorotetrazoles. All 1-aryl-5-chlorotetrazoles prepared by this method are reported in Table I with yields, physical and spectral properties, and analytical data. Any major modification in method or work-up is indicated in a footnote.

A solution of 19.2 g (0.010 mole) of N-(p-fluorophenyl)dichloroazomethine in 25 ml of dimethoxyethane was stirred overnight with 0.70 g (0.011 mole) of activated sodium azide. The solution was poured into a large excess of ice water. The resulting light-colored solid was separated by suction filtration, washed with water, and air dried. The crude 1-(p-fluorophenyl-5-chlorotetrazole), mp 87-88°, was obtained in yield of 1.59 g (79%) and was purified by recrystallization from benzene-hexane mixture to white crystals, mp 88°.

2. 1-Phenyl-5-azidotetrazole (3,  $\dot{Ar} = C_6 \dot{H}_5$ ).—A solution of 5.40 g of 2 (Ar =  $C_6 H_5$ ) in 100 ml of acetone was treated with 13 g of commercial sodium azide. (Activated sodium azide was used in most of the other preparations.) The solution was stirred and heated to reflux overnight. The mixture was filtered and solvent was removed from the filtrate under reduced pressure. The residue was recrystallized from methanol to yield 4.30 g (77%) of 1-phenyl-5-azidotetrazole, mp 96-96.7° (lit.<sup>7</sup> mp 99°).

This reaction underwent no apparent reversal when a solution of  $3 (\text{Ar} = C_6 H_5)$  in acetone was heated to reflux for 3 days with a large excess of tetraethylammonium chloride monohydrate.

3. 1-Aryl-5-mercaptotetrazoles.<sup>15</sup>—Most of these compounds were prepared by the standard literature procedures.<sup>12</sup> However, a modified procedure was required for the *o*-nitro derivative.

1-(o-Nitrophenyl)-5-mercaptotetrazole.<sup>15</sup>-A solution of 18 g (0.1 mole) of recrystallized o-nitrophenyl isothiocyanate in 50 ml of warm chloroform was placed in a round-bottom flask equipped with a mechanical stirrer and reflux condenser and mounted on the steam bath. A solution of 15 g of sodium azide in 50 ml of water was added to the stirred solution. After the initial exothermic reaction subsided, the steam was turned on and the stirred solution was heated to reflux for 0.5-1.5 hr. (The optimum time, which varied with the purity of the isothiocyanate, was determined for each batch.) The solution was cooled and filtered. The aqueous layer was separated and acidified with 10 ml of 37% hydrochloric acid. The precipitate of crude yellow thiol containing some o-nitrophenylcyanamide was separated by suction filtration, washed with distilled water, and air dried. The crude solid was slurried with 200 ml of benzene and allowed to stand for 1-3 days. The mixture was filtered and the pure 1-(o-nitrophenyl)-5-mercaptotetrazole was washed with benzene and was air dried: yield, 10-14 g (45-63%). A portion recrystallized by careful acidification (hydrochloric acid) of a solution in very dilute sodium hydroxide melted at 119.8-120.4°: vmax 3040, 2900, 2750, 1600, 1580, 1525, 1393, 1340, 1290, 1044, 986, 856, 793, 743, 718, 696, and 662  $cm^{-1}$ 

4. 1-Aryltetrazoles by Oxidation of 1-Aryl-5-mercaptotetrazole.—The following modifications of the procedure of Freund and Paradies<sup>12</sup> were found convenient for the preparation of a variety of 1-aryltetrazoles (see Table I; method B was found more suitable for certain thermally sensitive 5-mercaptotetrazoles).

Method A Illustrated for 1-Phenyltetrazole.—A stirred solution of 44.5 g (0.25 mole) of 1-phenyl-5-mercaptotetrazole in 350 ml of hot acetic acid was cooled to 70° and 50 g (0.50 mole) of solid chromic acid was added in portions while maintaining the temperature at  $60-75^\circ$ . After an additional 10 min at 70–75°, the product was poured onto a mixture of 1 kg of ice and 500 ml of dichloromethane in a 4-l. beaker. An aqueous solution of 200 g of sodium hydroxide was added continuously with stirring. The solution was brought to pH 7 with sodium carbonate solution. The solution was extracted with methylene chloride and the extract was washed with sodium carbonate solution and dried with magnesium sulfate. Solvent was removed under reduced pressure and the residue was recrystallized from carbon tetrachloride to yield 16.8 g (46%) of 1-phenyltetrazole, mp 66.5–67.3 (lit.<sup>12</sup> mp 66.5–67.3°).

Method B Illustrated for 1-(o-Nitrophenyl)tetrazole (10).—A solution of 30 g (0.135 mole) of o-nitrophenyl-5-mercaptotetra-

zole in 350 ml of acetic acid was treated with a solution of 20 g (0.20 mole) of chromic acid in 35 ml of water while maintaining the temperature at 35-40° with a cooling bath. The solution was allowed to stand for 1 hr and was worked up as above. Evaporation of the solvent produced 12-16 g (47-62%) of crude 1-(o-nitrophenyl)tetrazole, mp 79.5-82°. Recrystallization from ethanol afforded yellow crystals: mp 85-86°; nmr  $\tau$  0.92 (1), 2.05, 2.10 (4) symmetrical multiplets. When this compound was reduced with sodium sulfide in boiling aqueous ethanol, it lost nitrogen to form 2-aminobenzimidazole.

B. Chemical Reactions of 5-Aryltetrazoles. 1. Nitration. To a stirred solution of 10.0 g (0.0554 mole) of 1-phenyl-5chlorotetrazole in 90 ml of 90% nitric acid was added 30 ml of red fuming nitric acid and the mixture was warmed on the steam bath for 5 min. The solution was then poured onto ice and the solid product filtered, washed thoroughly with water, and air dried. The crude 1-(p-nitrophenyl)-5-chlorotetrazole (10.3 g, 83% yield, mp 91-94°) was recrystallized from benzene-hexane to give 8.20 g (66%) of pale yellow plates, mp  $95.5-97.0^{\circ}$ . The melting point rose to 98.0-99.4° after additional recrystallizations The para orientation was proved by comparison of the infrared and proton nmr spectra with those of authentic samples of 1-(m- and p-nitrophenyl)-5-chlorotetrazole, prepared from the corresponding N-(nitrophenyl)dichloroazomethines. Analytical data are given in Table I.

2. Reduction. a. To Aniline.—In a control experiment, 0.5 g of 1-phenyl-5-chlorotetrazole in a solution of 100 ml of absolute alcohol containing 0.5 g of  $PtO_2$  was recovered unchanged from shaking under 40-lb hydrogen pressure for 2 hr.

A 1.0-g sample of 1-(*m*-nitrophenyl)-5-chlorotetrazole in 100 ml of absolute ethanol containing 1.0 ml of 9 N HCl in anhydrous ethanol and 0.3 g of  $PtO_2$  with hydrogenated in a Parr shaker at 40-lb hydrogen pressure for 2 hr. The catalyst was removed by filtration and the ethanol evaporated. The solid residue after trituration with ether weighed 0.58 g (mp 199-200° dec and was characterized as the hydrochloride of 1-(*m*-aminophenyl)-5-chlorotetrazole. The free aniline was obtained by treatment of the hydrochloride with sodium carbonate and was recrystallized from benzene-hexane. In larger scale hydrogenations the product was partly insoluble and was extracted from the catalyst with dilute hydrochloric acid.

b. Partial Reduction of o-Nitro Derivatives. 1. 1-(o-N-Hydroxylaminophenyl)tetrazole (12).—A solution of 14.8 g of 10 in 100 ml of warm ethanol was catalytically hydrogenated at 40 psi with 0.2 g of 10% palladium-on-charcoal catalyst. The resulting solution was filtered and the solvent was removed at room temperature under reduced pressure. The residue was rapidly recrystallized from ethanol to yield 9.9 g of 1-(o-N-hydroxylaminophenyl)tetrazole. A portion recrystallized from ethanol melted at 138.8–140.6°. The product was rapidly converted to the corresponding azo compound 13 in hot solvents. This reaction also appeared to occur slowly at room temperature in ethanol.

2.  $o_i o'$ -Bis(1-tetrazolyl)azobenzene (13).—A solution of 0.5 g of the hydroxylamine 12 in 0.5 ml of N,N-dimethylformamide was heated for 3 hr on the steam bath. The solution was cooled, 3 ml of ethanol was added, and the orange crystalline product was separated by filtration. After recrystallization from hot dimethyl sulfoxide, the product melted with decomposition at 244.8°.

3. Diazotization and Coupling.—A solution of 0.46 g (0.0020 mole) of 1-(m-aminophenyl)-5-chlorotetrazole in 0.5 ml of sulfuric acid and 0.5 ml of glacial acetic acid was diazotized in the usual manner with 0.25 g of sodium nitrite and 0.5 ml of water. Excess nitrite was decomposed with 0.25 g of sulfamic acid in 5 ml of water and the diazonium solution was added to 1.0 g (0.010 mole) of  $\beta$ -naphthol in 50 ml of 95% ethanol. The orange precipitate (0.7 g) was separated by filtration, extracted in ethyl acetate, and precipitated by slow addition of pentane. The 1-[m-( $\beta$ -hydroxynaphthylazo)phenyl]-5-chlorotetrazole (0.44 g, mp 204-205° dec) was further purified for analysis by recrystallization from benzene.

4. Reaction with Magnesium or Butyllithium.—A solution of 3.61 g of 1-phenyl-5-chlorotetrazole in 10 ml of tetrahydrofuran was added to 0.5 g of magnesium in 5 ml of tetrahydrofuran under dry nitrogen. A crystal of iodine and 1 drop of isopropyl alcohol did not initiate reaction, but after refluxing for several hours part of the magnesium was consumed. The solution was cooled and dry  $CO_2$  passed over the surface. No reaction was apparent. The solution was hydrolyzed with dilute ammonium sulfate and the ether layer separated. No product was isolated from the aqueous phase on acidification, but 2.41 g of oil was obtained from the ether. This oil crystallized on standing, mp 40-45°, and was identified as N-phenylcyanamide, containing small amounts of impurity, by comparison of infrared spectra with that of an authentic sample.

From reaction of 3.28 g (0.0182 mole) of 1-phenyl-5-chlorotetrazole in 40 ml of ether with 13.4 ml of 1  $\hat{M}$  butyl lithium solution in hexane (0.020 mole of butyllithium) at -10°, followed by CO<sub>2</sub> treatment and hydrolysis, 1.15 g of crude N-phenylcyanamide was obtained.

5. Rearrangements of 1-Aryl-5-mercaptotetrazoles (9).—A mixture of 10 g of the 1-(o-nitrophenyl)-5-mercaptotetrazole (9) and 150 ml of benzene was heated to reflux for no more than 45 min. The solvent was removed under reduced pressure at room temperature and the yellow solid residue was triturated with 10 ml of acetone. The mixture was filtered to remove sulfur and solvent was removed from the filtrate under reduced pressure. The residue was rapidly recrystallized from 75 ml of boiling benzene (Darco) to which 5 ml of hexane was added. The yellow crystalline 5-(o-nitroanilino)-1,2,3,4-thiatriazole (5.08 g, 51%) melted at 114.2-114.7°:  $\nu_{max}$  1609, 1590, 1548, 1502, 1470, 1334, 1320, 1270, 1216, 1170, 1146, 1094, 1070, 972, 931, 869, 825, 782, 744, and 698 cm<sup>-1</sup>. By acidification of a solution of 16 in warm base, the mercaptotetrazole 9 was obtained.

By the slow addition of hexane to the mother liquors from the recrystallization of 15, 2.25 g (26%) of o-nitrophenylcyanamide was obtained. This compound could also be obtained in high yield by heating 15 overnight in refluxing benzene. The o-nitrophenylcyanamide melted at 148.8-149.8° (lit. mp 146°37a and 152-153<sup>37b</sup>) and exhibited characteristic infrared absorptions for NH, C=N, and NO<sub>2</sub> at 3230, 2260, and 1530/1340  $cm^{-1}$ , respectively.

For preparation of phenyl- and m- and p-fluorophenylaminothiatriazoles, a modified literature procedure<sup>17,38</sup> (addition of ethanol as solvent was necessary) was most satisfactory because the rate of isomerization of the mercaptotetrazole appeared, from infrared studies, to proceed at a comparable rate to that of decomposition to cyanamide. The physical and analytical data on the fluorophenylthiatriazoles are given in Table I.

N-Phenylcyanamide and N-(p-fluorophenyl)cyanamide were obtained in very low yield from decomposition of the corresponding 5-aryl-1-mercaptotetrazoles in refluxing benzene. The *m*-fluorophenylcyanamide was obtained in approximately 40% yield.<sup>39</sup> The products were isolated by evaporation of the solvent, extraction with cold dilute sodium hydroxide solution. and acidification with cold dilute hydrochloric or acetic acid. The poor yields in these cases relative to that from o-nitrophenylcyanamide are attributed to the low stability of the products in the reflexing benzene.

Anal. Calcd for  $C_7H_6FN_2$ : F, 14.0; N, 20.6. Found (for meta isomer): F, 13.7, 13.6; N, 20.0; mp 68–68.5°. Found (for para isomer): F, 13.7, 13.6; N, 20.4, 20.8; mp 82.1–82.8°.

C. Thermal Decomposition Studies .-- The 1-phenyl-5-chlorotetrazole was decomposed in the temperature range of 150-200°, neat and in solvents such as ethylene glycol, diethyl maleate, mineral oil, benzonitrile, 2-(2-butoxyethoxy)ethanol, dicyclopentadiene, and trichlorobenzene. Only brown-to-black resins or dark oils were obtained and no tractable product could be isolated.

Kinetic studies on rate of nitrogen evolution were carried out by measuring nitrogen evolution from a tetrazole using a sealed system connected to a gas buret. The tetrazole sample (about 1 g) was added to approximately 100 ml of solvent held at constant temperature by a refluxing solvent bath; 95-100%

(38) E. Lieber and J. Ramachandran, Can. J. Chem., 37, 101 (1959).

(39) The m- and p-fluorophenylcyanamide were also prepared for comparison from N-(m- and p-fluorophenyl)thioureas by the procedure of B. Singh, H. Krall, and R. Sahasrabudhey, J. Indian Chem. Soc., 23, 373 (1946); Chem. Abstr., 41, 6541 (1947).

of the theoretical amount of nitrogen was obtained for a completed reaction. A first-order rate constant to  $\pm 10\%$ , was found between 20 and 70% of nitrogen evolution. The firstorder rate constants for nitrogen evolution in a series of decompositions showing solvent, catalyst, and substituent effects are given in Tables II and III.

D. Physical and Spectral Measurements. 1. Ionization Constants .-- The ionization constants of the anilines were determined by spectrophotometric measurement in water at 25° as described previously,<sup>40</sup> following the procedure of Bryson.<sup>41</sup> Data are given in Table IV.

2. Nmr Calibrations.-The F19 nmr calibrations were carried out as described previously<sup>30,81</sup> in acetonitrile containing 5% p-difluorobenzene or in benzene, dioxane, acetonitrile, acetone, or methanol containing 5% 1,1,2,2-tetrachlorotetra-fluorocyclobutane as internal calibrant. (Samples were not of sufficient solubility to be calibrated in trichlorofluoromethane or other solvents of low polarity.) Measurements were made at three or four concentrations (40, 20, 10, and 5%) and the chemical shift was obtained by extrapolation to infinite dilution. Data are reported in Table V.

3. Substituent Parameters.—The Hammett  $\sigma$  constants were calculated by the standard methods<sup>30,42</sup> from the ionization constant data. Substituent constants were calculated from the F<sup>19</sup> Nmr chemical shift data using the procedure described by Taft and co-workers.<sup>30,31,43</sup> The  $\sigma_{I}$ ,  $\sigma_{R}$  parameters were calculated according to Taft.<sup>31</sup> The data are reported in Tables IV and VI.

**Registry No.**—1 (Ar = o-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>), 14213-48-0; 1  $(Ar = p-FC_6H_4), 14210-24-3; 2 (Ar = C_6H_5),$ 14210-25-4; 2 (Ar = m-FC<sub>6</sub>H<sub>4</sub>), 14210-26-5; 2 (Ar =  $p-FC_6H_4$ , 14210-27-6; 2 (Ar =  $o-O_2NC_6H_4$ ), 14210-28-7; 2 (Ar = m-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 7025-13-0; 2 (Ar = p- $O_2NC_6H_4$ ), 14210-30-1; 2 (Ar =  $m-H_2NC_6H_4$ ), 14210-31-2; 2 (Ar = m-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>) HCl, 14210-32-3; 2  $(Ar = p-H_2NC_6H_2), 14210-33-4; 2 (Ar = C_{16}H_{12}N_2O),$ 14210-34-5; 3 (Ar =  $C_6H_5$ ), 14210-35-6; 3 (Ar = m- $FC_{6}H_{4}$ , 14210-36-7; 3 (Ar = p-FC<sub>6</sub>H<sub>4</sub>), 14210-37-8; **3** (Ar = p-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 14210-38-9; **5**, 14210-39-0; **6**, 14518-73-1; 9a, 14210-40-3; 9b, 14210-41-4; 9 (Ar = m-FC<sub>6</sub>H<sub>4</sub>), 9a form, 14210-42-5; 9 (Ar = p-FC<sub>6</sub>H<sub>4</sub>), 9a form, 14210-43-6; 9 (Ar = m-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 9a form, 14210-44-7; 9 (Ar = p-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 9a form, 14210-45-8; 9 (Ar = m-FC<sub>6</sub>H<sub>4</sub>), 9b form, 14210-46-9; 9 (Ar  $= p - FC_6H_4$ , 9b form, 1544-79-2; 9 (Ar =  $m - O_2NC_6$ -H<sub>4</sub>), 9b form, 7025-16-3; 9 (Ar = p-O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>), 9b form, 14210-49-2; 10, 14210-50-5; 11, 14210-51-6; 12, 14210-52-7; 13, 14320-29-7; 15  $(Ar = o-O_2NC_6H_4)$ , 14213-04-8; 15 (Ar = m-FC<sub>6</sub>H<sub>4</sub>), 14213-05-9; 15 (Ar  $= p-FC_6H_4$ ), 1544-80-5; N-phenylcyanamide, 622-34-4; o-nitrophenylcyanamide, 5465-98-5.

Acknowledgment.—We wish to acknowledge with thanks the assistance of Miss Ellen Wallace and Miss Naomi Schlichter for spectral measurements, Dr. Harlan Foster and Mr. Louis Walther for nmr measurements, and Mrs. Flora Youngken for decomposition studies. We are also grateful to Dr. Richard C. Lord for helpful discussion on interpretation of the infrared data.

(40) W. A. Sheppard, J. Am. Chem. Soc., 85, 1314 (1963).
(41) A. Bryson, *ibid.*, 82, 4858 (1960).

- (42) H. H. Jaffé, Chem. Rev., 53, 191 (1953).
- (43) R. W. Taft, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, J. Am. Chem. Soc., 85, 3146 (1963).

<sup>(37) (</sup>a) P. Pierron, Ann. Chim. Phys. (8), 15, 175 (1908); (b) R. C. Elderfield and F. W. Short, J. Org. Chem., 18, 1092 (1953).